

KALAS 2024 Conference

Symposium 12: Developing Cell-Gene Treatment (CGT) Human Cell Immunotherapy
Using Humanized Animal Models

In Vivo and In Vitro Studies for Evaluation of Tumorigenicity of Cell Therapy Products

Yoji SATO, Ph.D.

Head, Division of Drugs

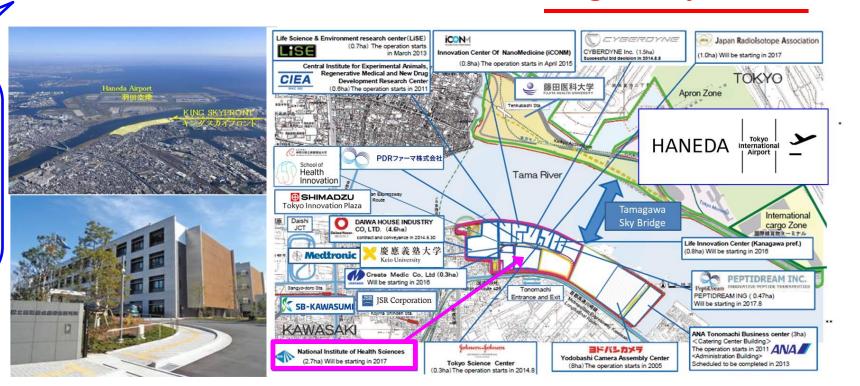
(Immediate Former Head, Division of Cell-Based Therapeutic Products)

National Institute of Health Sciences, Japan

DISCLAIMER

The views and opinions expressed in this presentation are those of the presenter and do not necessarily represent the official policy or position of the Japanese National Institute of Health Sciences or the Japanese Ministry of Health, Labour & Welfare. Also, the presenter has no COI to disclose in connection with this presentation.

National Institute of Health Sciences



Established in 1874 as "Tokyo Pharmaceutical Testing Laboratory"

This year marks its 150th anniversary.

- Located just across the river from Haneda Airport (Tokyo International Airport)
- Serves as the Base of Research and Evaluation in the Field of Regulatory Science

Our institute sounds like
US NIH, but is actually more
like the research sections of
of US FDA or
like NIFDS of Korean MFDS.

...is the science of developing new tools, standards, and approaches to assess the safety, efficacy, quality, and performance of all FDA-regulated products.

Why is regulatory science necessary for the development of advanced therapeutic products?

• It is because the development of evaluation methods often do not catch up with the rapid development of new types of products (e.g., cell and gene therapy products), which emerge as a result of technological advances.

• It is also because even when **new types of analytical tools** (e.g., next-generation sequencers) are developed as a result of technological advances, **their capabilities and limitations** when used to evaluate the quality and safety of therapeutic products **are unknown**.

AGENDA

- 1. What is tumorigenicity? –The risk of tumorigenesis and its hazards–
- 2. Development of highly sensitive test methods for the detection of transformed cells in human cell therapy products
- 3. Development of highly sensitive test methods for the detection of residual pluripotent stem cells in human ES/iPS cell-derived products
- 4. How much are genomic mutations predictive of abnormal tissue formation from human iPSC-derived products after engraftment?

AGENDA

- 1. What is tumorigenicity? –The risk of tumorigenesis and its hazards–
- Development of highly sensitive test methods for the detection of transformed cells in human cell therapy products
- Development of highly sensitive test methods for the detection of residual pluripotent stem cells in human ES/iPS cell-derived products
- 4. How much are genomic mutations predictive of abnormal tissue formation from human iPSC-derived products after engraftment?

Major Challenges in Regulatory Science of Cell Therapy Products What should be evaluated?

- 1. Viral safety (allogeneic vs. autologous)
- 2. Characteristics and eligibility of cells to be used as raw materials
- 3. Eligibility of ancillary materials of human or animal origin, other than cell substrates
- 4. Establishment and management of cell banks as cell substrates
- 5. Manufacturing strategy and process validation to achieve reproducibility of the final product quality
- 6. Characterization of cells as active ingredients of the final product
- 7. Identification and specification of critical quality attributes of the final product (QC of the final product)
- 8. Comparability in the quality of products subject to changes in their manufacturing process/cell banks
- 9. Design and interpretation of non-clinical safety studies and non-clinical proof-of-concept studies
- 10. Design and interpretation of tumorigenicity studies (especially for ESC/iPSC-derived products)
- 11. Immunogenicity of the final product
- 12. Biodistribution of administered cells *in vivo* and their behavior at the engraftment site
- 13. Design and interpretation of clinical trials
- 14. Efficacy and safety follow-up

Safety & eligibility of raw materials

Ensuring the quality of the final product

Prediction of safety & efficacy in the non-clinical phase

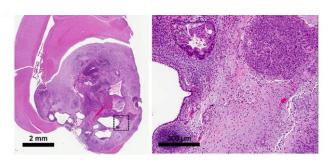
Clinical Evaluation

Major Challenges in Regulatory Science of Cell Therapy Products What should be evaluated?

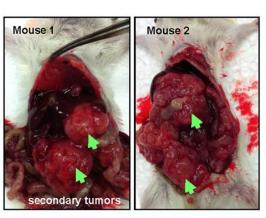
- 1. Viral safety (allogeneic vs. autologous)
- 2. Characteristics and eligibility of cells to be used as raw materials
- 3. Eligibility of ancillary materials of human or animal origin, other than cell substrates
- 4. Establishment and management of cell banks as cell substrates
- 5. Manufacturing strategy and process validation to achieve reproducibility of the final product quality
- 6. Characterization of cells as active ingredients of the final product
- 7. Identification and specification of critical quality attributes of the final product (QC of the final product)
- 8. Comparability in the quality of products subject to changes in their manufacturing process/cell banks
- 9. Design and interpretation of non-clinical safety studies and non-clinical proof-of-concept studies
- 10. Design and interpretation of tumorigenicity studies (especially for ESC/iPSC-derived products)
- 11. Immunogenicity of the final product
- 12. Biodistribution of administered cells *in vivo* and their behavior at the engraftment site
- 13. Design and interpretation of clinical trials
- 14. Efficacy and safety follow-up

Safety & eligibility of raw materials

Ensuring the quality of the final product


Prediction of safety & efficacy in the non-clinical phase

Clinical Evaluation

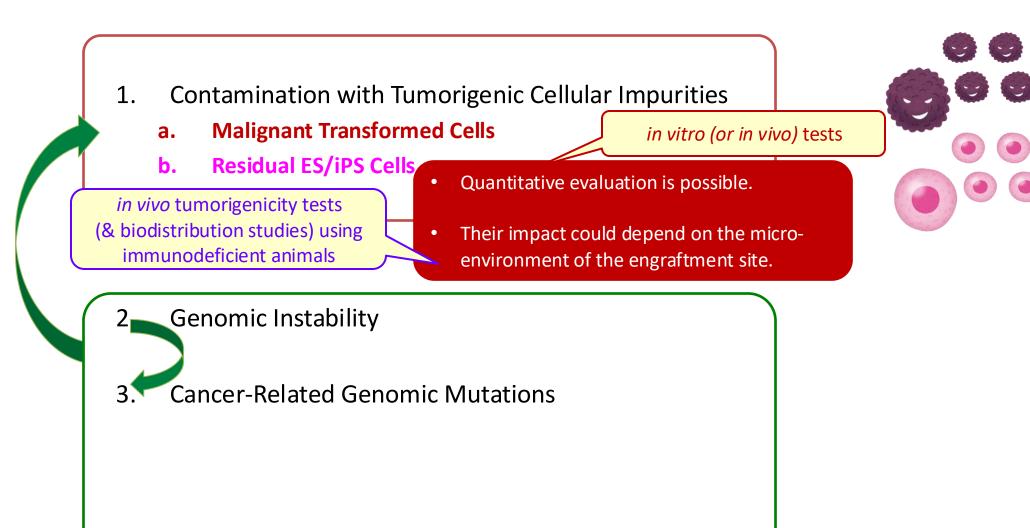

Tumorigenicity

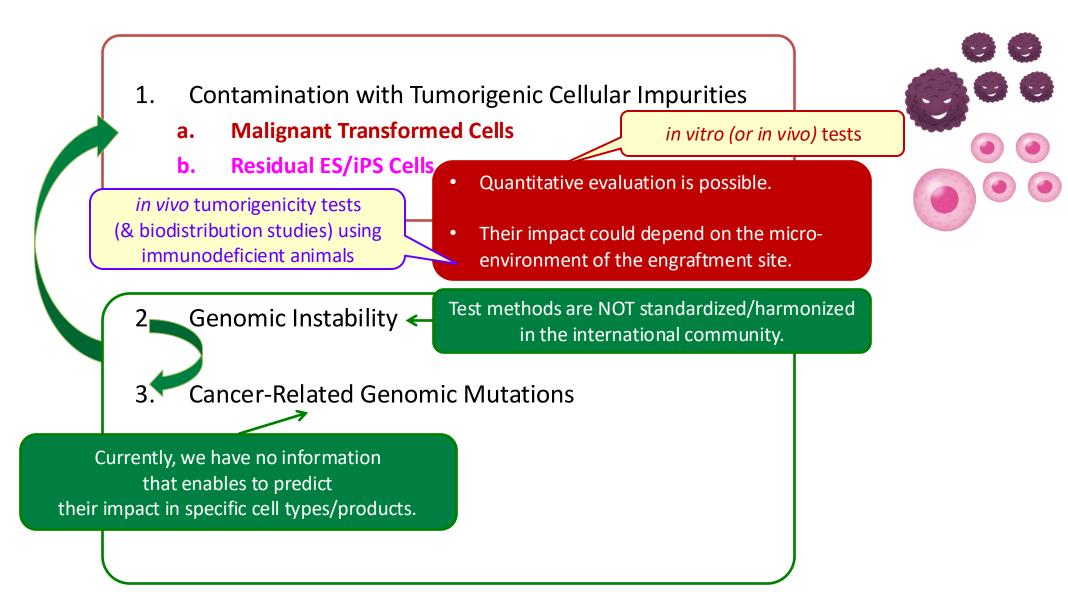
... is one of the major concerns for cell therapy products, especially for pluripotent stem cell-derived products

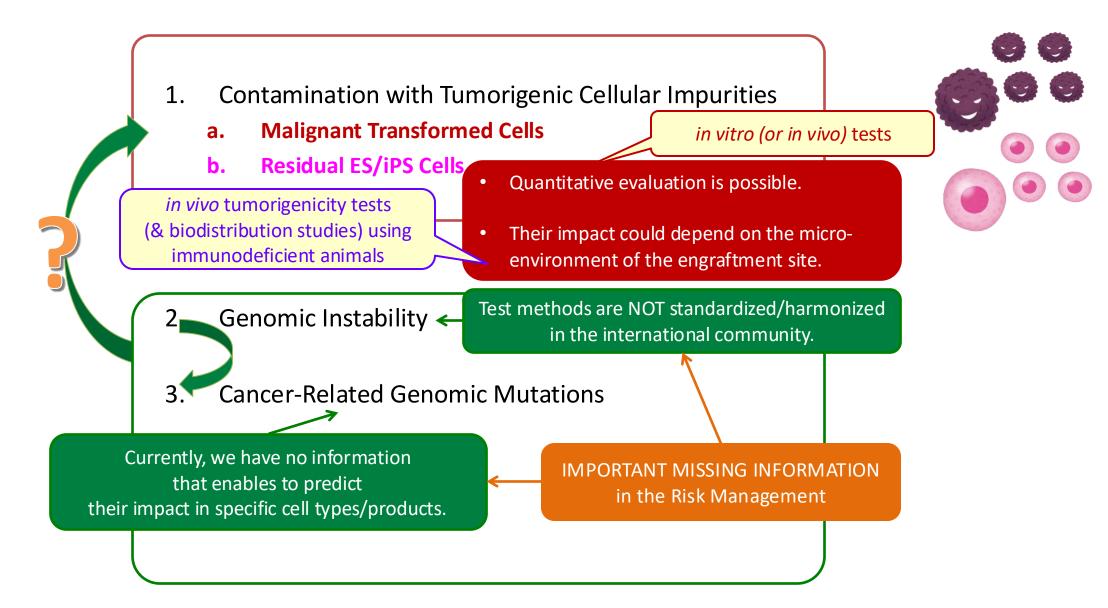
- Human pluripotent stem cells (PSC) have the potential to revolutionize regenerative medicine and cell therapy.
- Some clinical trials on pluripotent stem cell-derived products are currently on going, and more trials are expected to start soon in many countries
- However, <u>cells transformed during the manufacturing process</u> and <u>residual</u> <u>undifferentiated PSCs</u> may form tumors in patients.

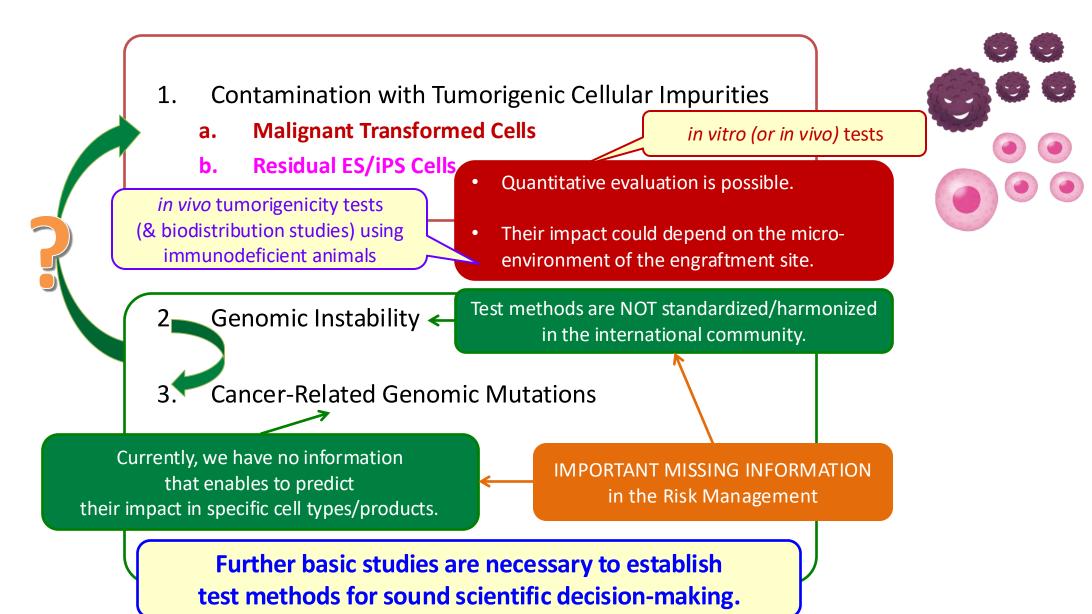
Ibon Garitaonandi et al. Scientific Reports 6:34478

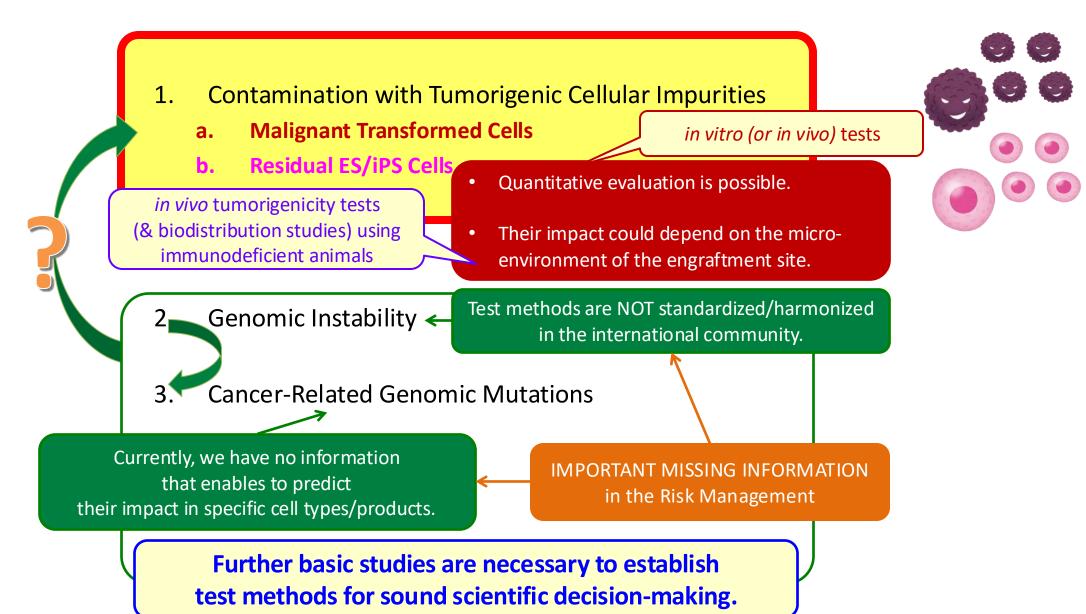
- 1. Contamination with Tumorigenic Cellular Impurities
 - a. Malignant Transformed Cells
 - b. Residual ES/iPS Cells


- 2. Genomic Instability
- 3. Cancer-Related Genomic Mutations


- 1. Contamination with Tumorigenic Cellular Impurities
 - a. Malignant Transformed Cells
 - b. Residual ES/iPS Cells




2 Genomic Instability


3. Cancer-Related Genomic Mutations

AGENDA

- 1. What is tumorigenicity? –The risk of tumorigenesis and its hazards–
- 2. Development of highly sensitive test methods for the detection of transformed cells in human cell therapy products
- Development of highly sensitive test methods for the detection of residual pluripotent stem cells in human ES/iPS cell-derived products
- 4. How much are genomic mutations predictive of abnormal tissue formation from human iPSC-derived products after engraftment?

Development of Test Methods for Detection of Transformed Cells

Tumorigenic Cellular Impurities — = Hazards of PSC-Derived Products

In Vitro Assays

Assays/ Platform	Conventional soft agar colony formation	Digital soft agar colony formation	Cell growth analysis
Positive control	HeLa cells	HeLa cells	HeLa cells
Duration	3 to 4 weeks	3 to 4 weeks	4 weeks or more
Assay principle	Conventional SACF assay based on anchorage-independent cell growth	Image-based screening system for the SACF assay using a high- content cell analyzer	The analysis of cell senescence/growth after serial passaging (compare the growth rates of hMSC w/wo positive controls after 5 passages)
Pros	Low cost	High sensitivity	High sensitivity, Low cost
Cons	Low sensitivity	High cost (needs image scanner)	Time-consuming
Sensitivity	0.02%	0.00001%	0.0001%
Reference	Kusakawa et al., Regen Ther. 2015	Kusakawa et al., Sci Rep. 2015	Kono et al., Biologicals. 2015 Hasebe-Takada et al. Regen Ther 2016

In Vivo Assay

Assays/Platform	Tumorigenicity Test
Animals	NOG mice
Route	Subcutaneous transplantation
Positive control	HeLa cells
Duration	>= 16 weeks
Pros	Direct evaluation in micro environment (expected clinical use site)
Cons	High cost, Long time, Especial facility, Low through put, Histopathological evaluation to confirm malignancy of the tumor
Sensitivity	to detect 10 HeLa cells in 106 hMSC (0.0001%) at 17% of probability
Reference	Kusakawa et al., Regen Ther. 2015

Development of Test Methods for Detection of Transformed Cells

Example 1

Assavs/

Pros

Platform

Tumorigenic Cellular Impurities — =Hazards of PSC-Derived Products

In Vitro Assays

Digital soft agar

colony formation

assay using a high-

content cell analyzer

cell growth analysis

Reference

Granth (no. of properties)

agar colony formation

Positive	HeLa cells	HeLa cells
control		

Conventional soft

uration	3 to 4 weeks	3 to 4 weeks
	Conventional SACF assay based on anchorage-	Image-based screening system for the SACF

based on anchorageindependent cell growth

High sensitivity Low cost

Low sensitivity High cost (needs image Cons scanner)

Sensitivity Reference Kusakawa et al., Regen

Kusakawa et al., Sci Rep. Ther. 2015 2015

0.00001%

HeLa cells

weeks or more

The analysis of cell enescence/growth after serial bassaging (compare the growth ates of hMSC w/wo positive controls after 5 passages)

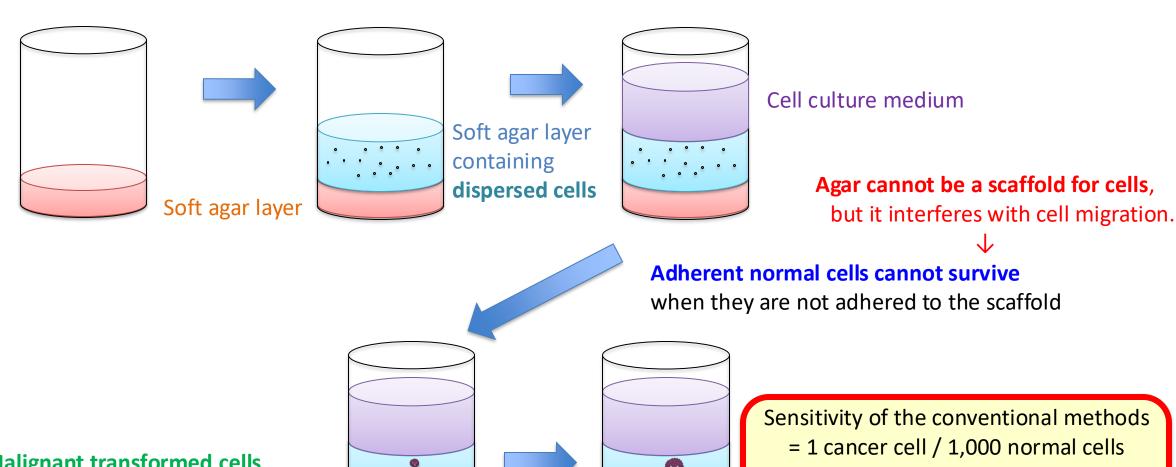
High sensitivity, ow cost

Time-consuming

0.0001%

Kono et al., Biologicals. 2015 Hasebe-Takada et al. Regen Ther 2016

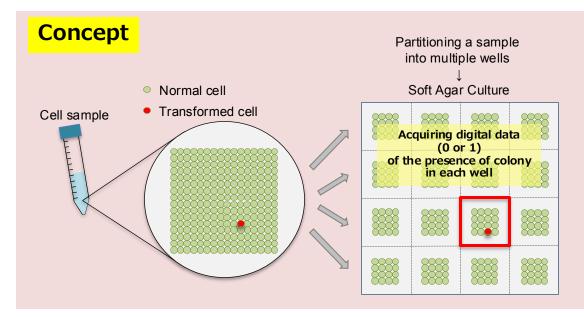
Assays/Platform	Tumorigenicity Test
Animals	NOG mice
Route	Subcutaneous transplantation
Positive control	HeLa cells
Duration	>= 16 weeks
Pros	Direct evaluation in micro environment (expected clinical use site)
Cons	High cost, Long time, Especial facility, Low through put, Histopathological evaluation to confirm malignancy of the tumor
Sensitivity	to detect 10 HeLa cells in 106 hMSC (0.0001%) at 17% of probability


Kusakawa et al., Regen Ther. 2015

In Vivo Assay

Conventional Soft Agar Colony Formation Assay

Purpose: Detection of scaffold-independent proliferation (= malignant transformed cells)

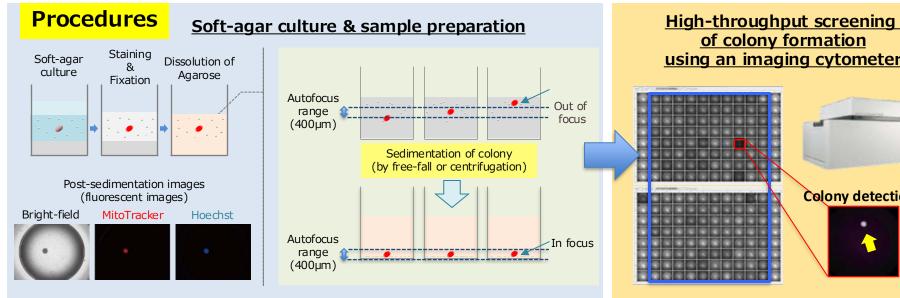


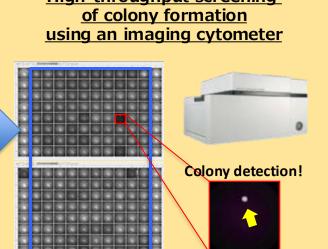
Malignant transformed cells

(= cancer cells) can grow without a scaffold,
resulting in colony formation.

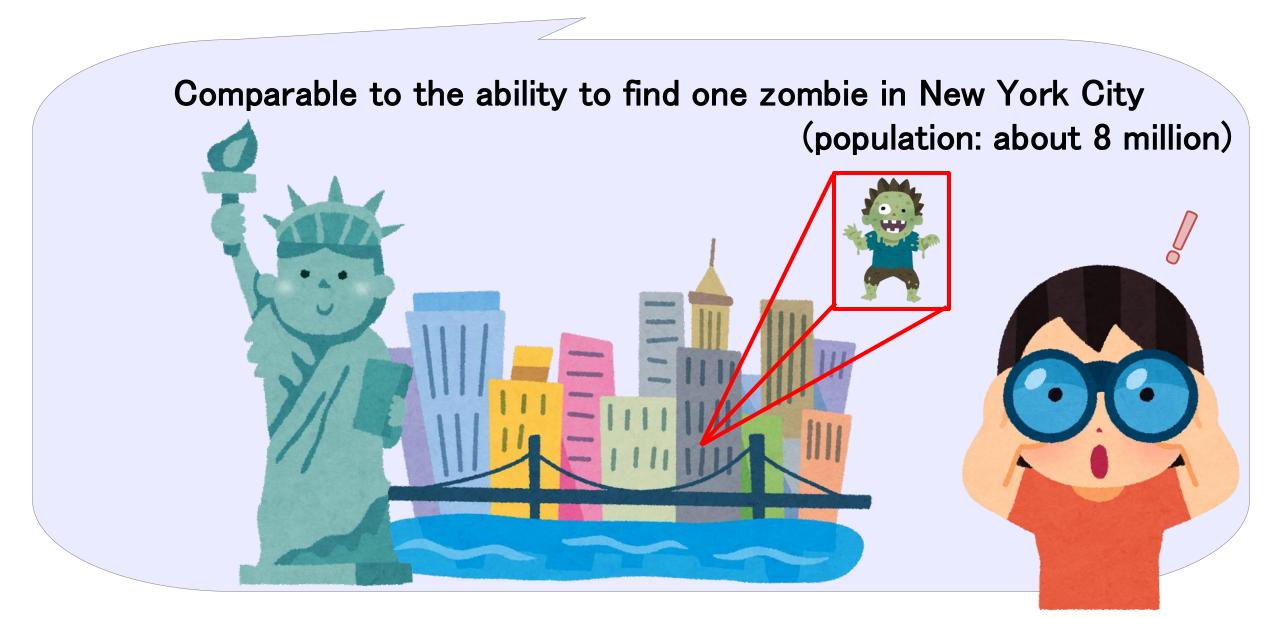
TOO LOW! for the safety assessment of cell therapy products

Digital Soft-Agar Colony Formation Assay

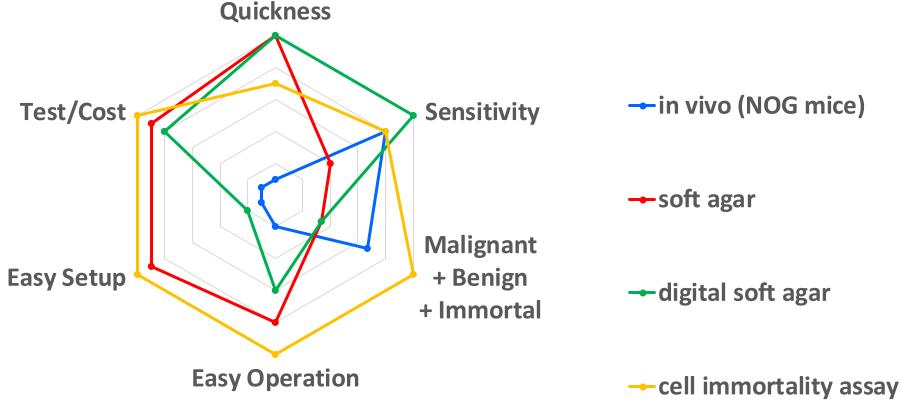

Partitioning a cell sample into multiple wells of culture plates enables digital readout of the presence of colony in each well and elevates the sensitivity for their detection.



Low S/N ratio



High S/N ratio


Digital Soft-Agar Colony Formation Assay has achieved the ability to detect cancer cells in normal cells at a ratio of 1 in 10 million

Qualitative Comparisons of Test Methods for Detection of Transformed Cells

(based on our validation studies and past literature)

AGENDA

- 1. What is tumorigenicity? –The risk of tumorigenesis and its hazards–
- 2. Development of highly sensitive test methods for the detection of transformed cells in human cell therapy products
- 3. Development of highly sensitive test methods for the detection of residual pluripotent stem cells in human ES/iPS cell-derived products
- 4. How much are genomic mutations predictive of abnormal tissue formation from human iPSC-derived products after engraftment?

Development of Test Methods for Detection of Residual Undiffrentiated PSCs

Tumorigenic Cellular Impurities — T = Hazards of PSC-Derived Products

In Vitro Assays

Assays/ Platform	Flow cytometry	qRT-PCR	Droplet Digital PCR	Direct detection using a highly efficient amplification method*
Positive control	iPS cells	iPS cells	iPS cells	iPS cells
Duration	1 day	6 hours	a few hours	about a week
Marker	TRA-1-60 etc	Lin28	Lin28	-
Pros	Simple/quick	Simple/quick, High sensitivity	Simple/quick, High sensitivity	Direct detection, High sensitivity
Cons	Low sensitivity, Indirect detection, Difficulty in the manual selection of marker thresholds	Indirect detection, Lin28 expression is noted in some differentiated cells	Indirect detection, Lin28 expression is noted in some differentiated cells	Time-consuming, Low throughput
Sensitivity	0.1%	0.002%	0.001%	0.01-0.001%
Reference	Kuroda et al., PLoS ONE. 2012	Kuroda et al., PLoS ONE. 2012	Kuroda et al., Regen Ther. 2015	Tano et al., PLoS ONE. 2014

In Vivo Assay

Assays/Platform	Tumorigenicity Test
Animals	NOG mice
Route	Subcutaneous transplantation
Positive control	iPS cells
Duration	17-30 weeks
Pros	Direct evaluation in micro environment (expected clinical use site)
Cons	High cost, Long time, Especial facility, Low through put, Histopathological evaluation to confirm tumor origin from whether residual undifferentiated iPS cells or transformed cells
Sensitivity	to detect 1000 hiPS cells in 2.5/10 ⁵ hRPE with 50% probability
Reference	Kanemura et al., Sci Rep. 2013; Kawamata et al., J Clin Med. 2015

^{*:} eg. cultured on laminin-521 in Essential 8 medium

Development of Test Methods for Detection of Residual Undiffrentiated PSCs

Example 2

Tumorigenic Cellular Impurities ________
=Hazards of PSC-Derived Products

In Vitro Assays

In Vivo Assay

-				
Assays/ Platform	Flow cytometry	qRT-PCR	Droplet Digital PCR	Direct detection using a highly efficient amplification method*
Positive control	iPS cells	iPS cells	iPS cells	iPS cells
Duration	1 day	6 hours	a few hours	about a week
Marker	TRA-1-60 etc	Lin28	Lin28	-
Pros	Simple/quick	Simple/quick, High sensitivity	Simple/quick, High sensitivity	Direct detection, High sensitivity
Cons	Low sensitivity, Indirect detection, Difficulty in the manual selection of marker thresholds	Indirect detection, Lin28 expression is noted in some differentiated cells	Indirect detection, Lin28 expression is noted in some differentiated cells	Time-consuming, Low throughput
Sensitivity	0.1%	0.002%	0.001%	0.01-0.001%
Reference	Kuroda et al., PLoS ONE. 2012	Kuroda et al., PLoS ONE. 2012	Kuroda et al., Regen Ther. 2015	Tano et al., PLoS ONE. 2014

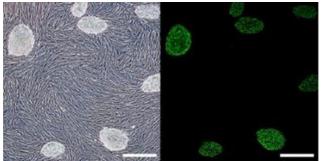
ion Y		A
y		A
1		R
		P
		D
		P
		C
n,		
′		S
ıg,		S R
t		
oS		

Assays/Platform	Tumorigenicity Test
Animals	NOG mice
Route	Subcutaneous transplantation
Positive control	iPS cells
Duration	17-30 weeks
Pros	Direct evaluation in micro environment (expected clinical use site)
Cons	High cost, Long time, Especial facility, Low through put, Histopathological evaluation to confirm tumor origin from whether residual undifferentiated iPS cells or transformed cells
Sensitivity	to detect 1000 hiPS cells in 2.5/10 ⁵ hRPE with 50% probability
Reference	Kanemura et al., Sci Rep. 2013; Kawamata et al., J Clin Med. 2015

^{*:} eg. cultured on laminin-521 in Essential 8 medium

Highly-Efficient Culture (HEC) Assay

Example 2


detects residual undifferentiated pluripotent stem cells (PSCs) in cell therapy products using highly efficient culture system which favors the

growth of PSCs

Assays/ Platform	Highly efficient culture assay
Positive control	iPS cells <i>etc</i>
Duration	about a week
Marker	TRA-1-60 <i>etc</i>
Pros	Direct detection, High sensitivity
Cons	Time-consuming, Low throughput
Sensitivity	1/10,000 - 1/100,000
Reference	Tano et al., PLoS ONE. 2014 Garitaonandia et al., Scientific Reports. 2016

This assay ...

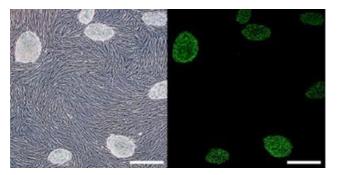
✓ is able to directly detect a trace amount of undifferentiated PSCs by measuring the number of colonies originated from a single PSC.

Tano et al., PLoS ONE. 2014

✓ is quite sensitive and has a potential to become more sensitive by improving culture system /colony detection method.

Highly-Efficient Culture (HEC) Assay

Example 2


detects residual undifferentiated pluripotent stem cells (PSCs) in cell therapy products using highly efficient culture system which favors the

growth of PSCs

Assays/ Platform	Highly efficient culture assay
Positive control	iPS cells <i>etc</i>
Duration	about a week
Marker	TRA-1-60 <i>etc</i>
Pros	Direct detection, High sensitivity
Cons	Time-consuming, Low throughput
Sensitivity	1/10,000 - 1/100,000
Reference	Tano et al., PLoS ONE. 2014 Garitaonandia et al., Scientific Reports. 2016

This assay ...

✓ is able to directly detect a trace amount of undifferentiated PSCs by measuring the number of colonies originated from a single PSC.

Tano et al., PLoS ONE. 2014

✓ is quite sensitive and has a potential to become more sensitive by improving culture system /colony detection method.

Improvement of detection method for residual undifferentiated iPS cells (tumorigenic cells) in differentiated cells derived from human iPS cells

Cytotherapy 23 (2021) 176-183

CYTOTHERAPY

Contents lists available at ScienceDirect

journal homepage: www.isct-cytotherapy.org

FULL-LENGTH ARTICLE

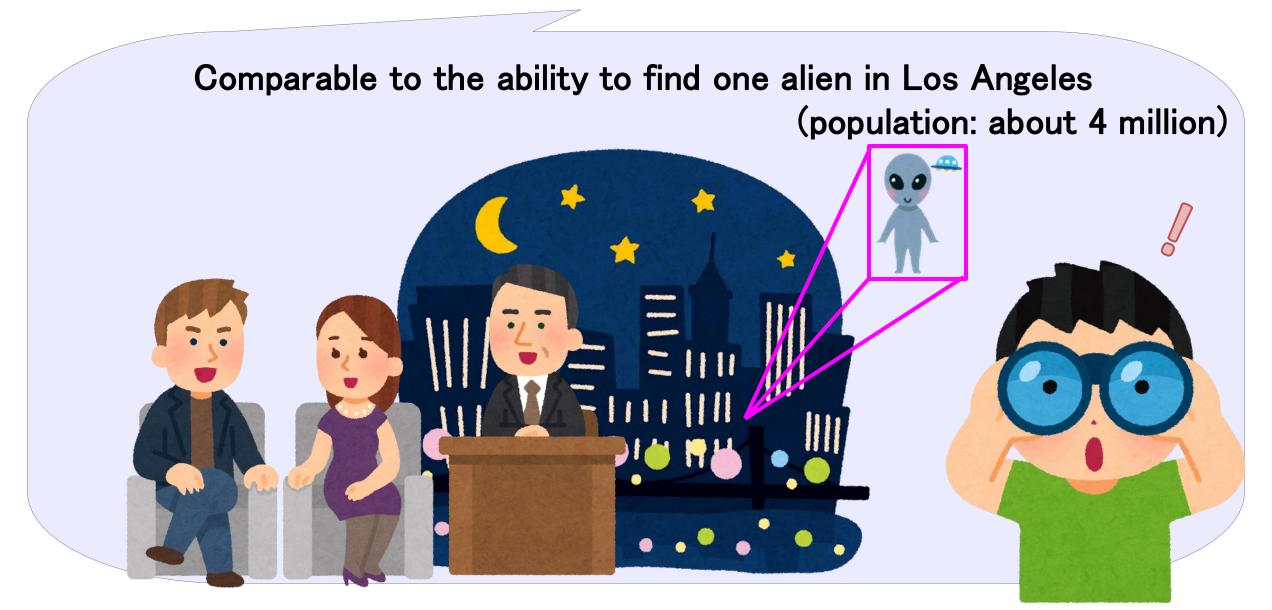
Regulatory Policies

Multisite studies for validation and improvement of a highly efficient culture assay for detection of undifferentiated human pluripotent stem cells intermingled in cell therapy products

Takeshi Watanabe^{1,2,*}, Satoshi Yasuda³, Shinji Kusakawa³, Takuya Kuroda³, Mayumi Futamura^{2,4}, Mitsuhide Ogawa^{2,5}, Hidemi Mochizuki^{2,6}, Eri Kikkawa^{2,7}, Hatsue Furukawa^{2,8}, Masato Nagaoka^{2,9}, Yoji Sato³

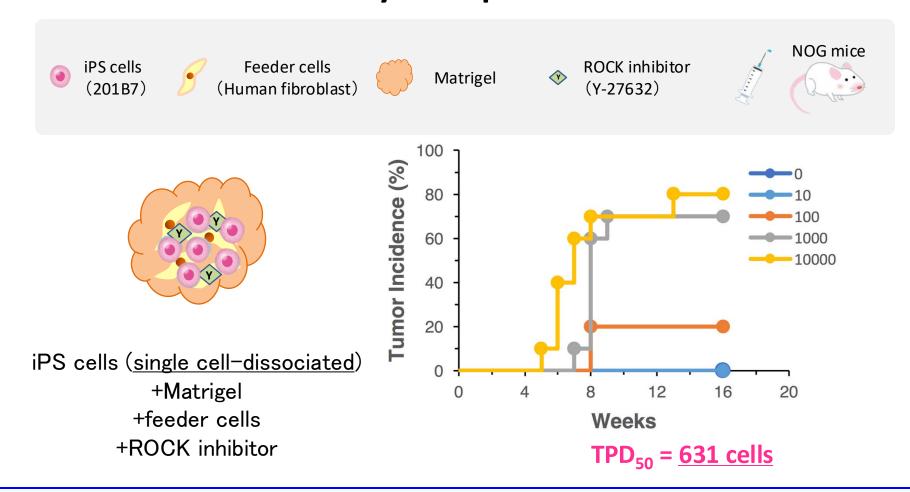
- Drug Safety Research and Evaluation, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
- ² The Committee for Non-Clinical Safety Evaluation of Pluripotent Stem Cell-Derived Product, Forum for Innovative Regenerative Medicine, Tokyo, Japan
- ³ Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, Kawasaki, Japan
- ⁴ Drug Discovery Support Division, Tsukuba Research Institute, BoZo Research Center Inc, Tsukuba, Japan
- 5 CMIC Bioresearch Center, CMIC Pharma Science Co, Ltd, Hokuto, Japan
- ⁶ Research Planning Section, Ina Research Inc, Ina-shi, Japan
- Research Division, HEALIOS K.K., Kobe, Japan
- 8 Integrated & Translational Science, Axcelead Drug Discovery Partners, Inc, Fujisawa, Japan
- ⁹ Life Science Research Laboratory, Tosoh Corporation, Ayase-shi, Japan

ABSTRACT


Background aims: The Multisite Evaluation Study on Analytical Methods for Non-Clinical Safety Assessment of Human-Derived Regenerative Medical Products (MEASURE) is a Japanese experimental public—private partnership initiative, which aims to standardize methodology for tumorigenicity evaluation of human pluripotent stem cell (hPSC)-derived cell therapy products (CTPs). Undifferentiated hPSCs possess tumorigenic potential, and thus residual undifferentiated hPSCs are one of the major hazards for the risk of tumor formation from hPSC-derived CTPs. Among currently available assays, a highly efficient culture (HEC) assay is reported to be one of the most sensitive for the detection of residual undifferentiated hPSCs.

Methods: MEASURE first validated the detection sensitivity of HEC assay and then investigated the feasibility of magnetic-activated cell sorting (MACS) to improve sensitivity.

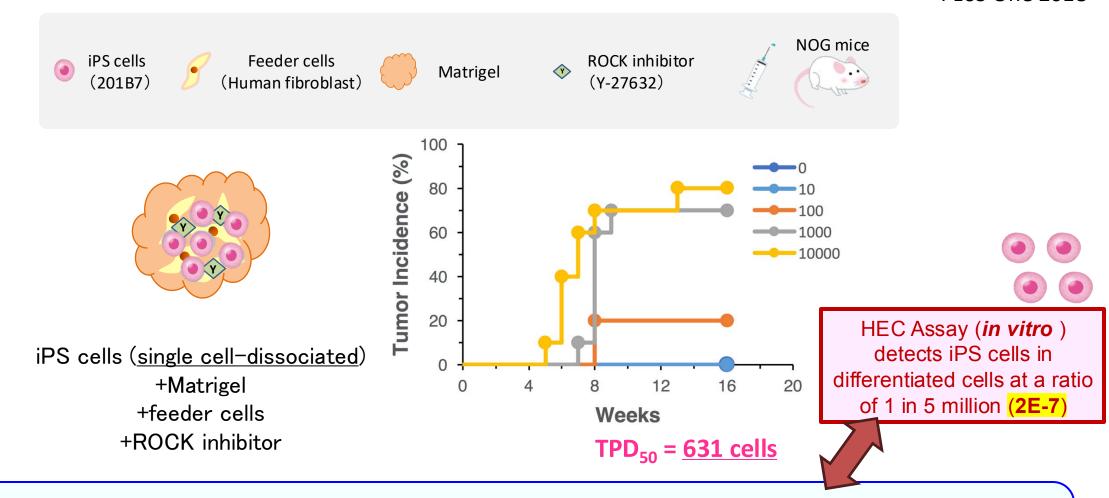
Results: The multisite experiments confirmed that the lower limit of detection under various conditions to which the human induced pluripotent stem cell lines and culture medium/substrate were subjected was 0.001%. In addition, MACS concentrated cells expressing undifferentiated cell markers and consequently achieved a detection sensitivity of 0.00002%.


Conclusions: These results indicate that HEC assay is highly sensitive and robust and that the application of MACS on this assay is a promising tool for further mitigation of the potential tumorigenicity risk of hPSC-derived CTPs.

The improved Highly-Efficient Culture (HEC) Assay has achieved the ability to detect residual iPSCs in differentiated cells at a ratio of 1 in 5 million

In vivo Tumorgenicity Test using NOG mice subcutaneously transplanted with iPSCs

Yasuda et al., PLoS One 2018

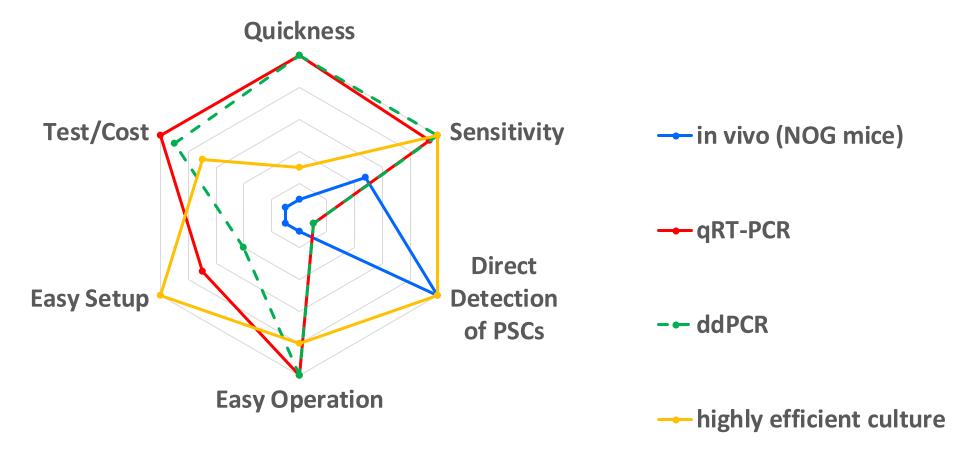


When iPS cells were most efficiently engrafted in severely immunodeficient mice, TPD_{50} was 631 cells. If 10^6 and 10^7 cells are injected, $TPD_{50} = 631$ would correspond to:

0.06% (6E-4) and 0.006% (6E-5), respectively.

In vivo Tumorgenicity Test using NOG mice subcutaneously transplanted with iPSCs

Yasuda et al., PLoS One 2018



When iPS cells were most efficiently engrafted in severely immunodeficient mice, TPD_{50} was 631 cells. If 10^6 and 10^7 cells are injected, $TPD_{50} = 631$ would correspond to:

0.06% (6E-4) and 0.006% (6E-5), respectively.

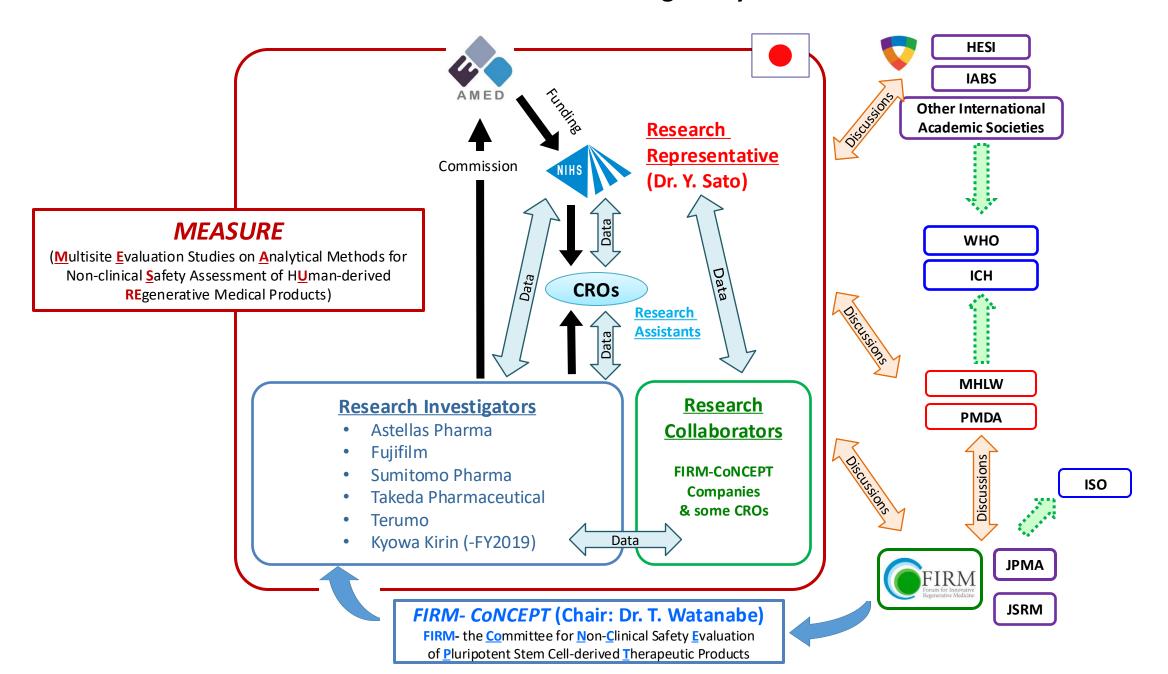
Qualitative Comparisons of Test Methods for Detection of Residual PSCs (based on our validation studies and past literature)

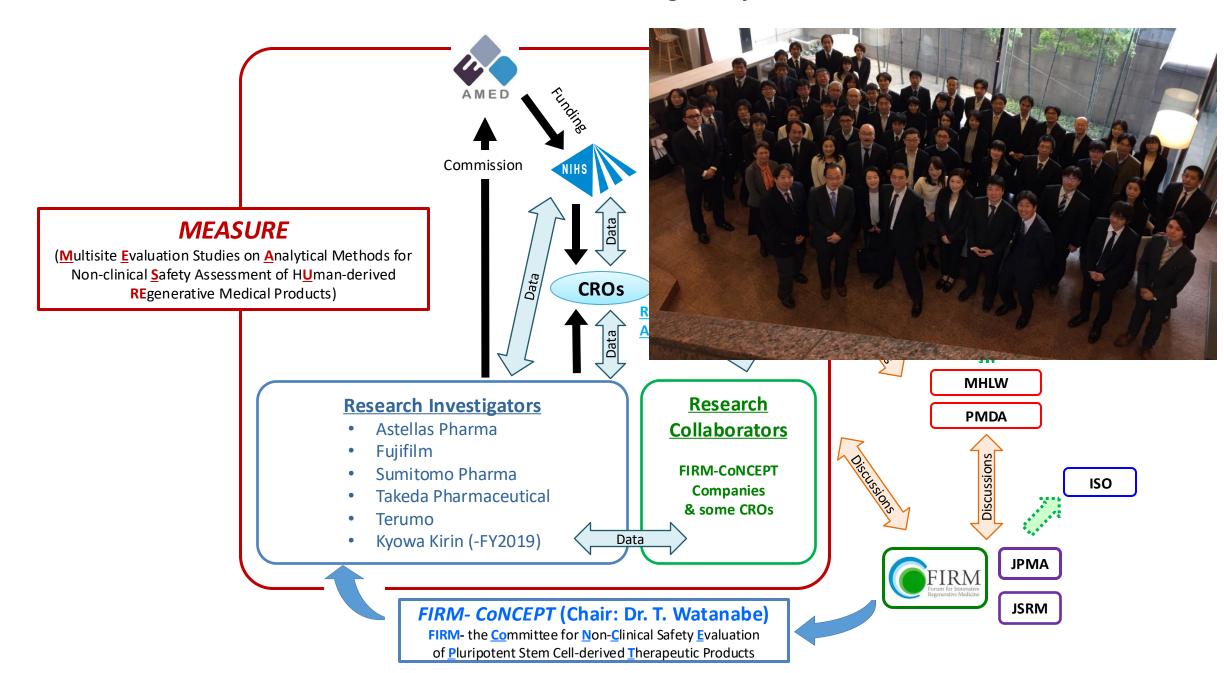
"Points to Consider for Detection of Undifferentiated Pluripotent Stem Cells/Transformed Cells, Tumorigenicity
Testing and Genomic Stability Evaluation of Human Cell-Processed Products" [in Japanese]
(Annex of Notification No. 0627-1 Issued on June 27, 2019, Pharmaceutical and Food Safety Bureau, MHLW)

Contents

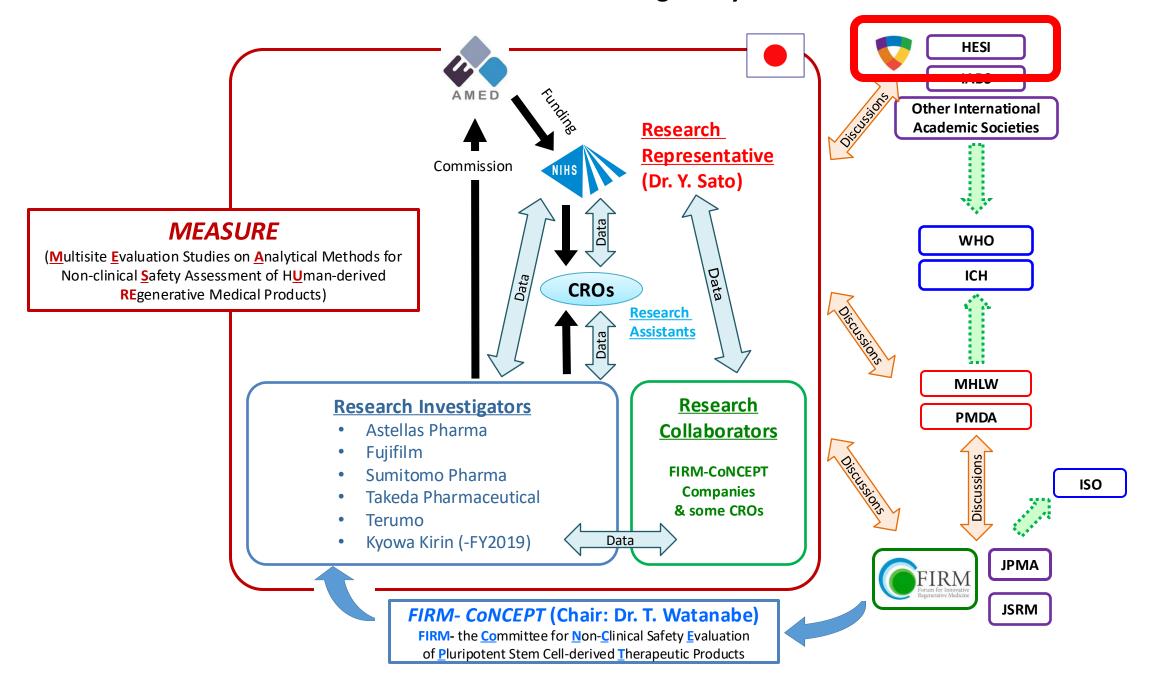
- 1. Introduction
- 2. Position of This Document
- 3. Glossaries
- 4. General Considerations
- 5. Tumorigenicity Tests for Human ES/iPS Cell-Processed Products
 - 5.1 Tumorigenicity Tests for Quality Characterization of Starting Cell Substrate
 - 5.2 Tests for Quantification of Tumorigenic Cells in Intermediate or Final Products
 - 5.2.1. Tests for detection of undifferentiated pluripotent stem cells in intermediate or final products.
 - 5.2.1.1. In vitro studies
 - 5.2.1.2. In vivo studies
 - 5.2.2. Tests for **detection of transformed cells** in intermediate or final products
 - 5.2.2.1. In vitro studies
 - 5.2.2.2. In vivo studies
 - 5.3 Tests to Evaluate the Tumorigenic Potential of Cells in the Final Products at the Site of Engraftment in Humans
 - 5.3.1. Selection of test animals
 - 5.3.2. Selection of control cells
 - 5.3.3. Number of test animals
 - 5.3.4. Site, repeat number and mode of cell administration
 - 5.3.5. Duration of observation
 - 5.3.6. Observation of the site of administration
 - 5.3.7. Pathological evaluation of the site of administration
 - 5.3.8. Interpretation of the results
- 6. Tumorigenicity-related Studies for Human Somatic Cell-processed/Somatic Stem Cell-processed Products
 - 6.1. Tumorigenicity Tests for Quality Characterization of Starting Cell Substrate
 - 6.2. Considerations for Tumorigenicity Testing for Final Products
- 7. General Considerations for Genomic Stability

Reference literature


Tables Details of detection methods for residual undifferentiated iPS/ES cells and malignant transformed cells Reference information (experimental protocols of the test methods)



https://www.cleajapan.com/promotion/japa nese/nextgenerationnog


Multisite Validation Studies on the Test Methods for Tumorigenicity Assessment of PSC-derived Products

Multisite Validation Studies on the Test Methods for Tumorigenicity Assessment of PSC-derived Products

Multisite Validation Studies on the Test Methods for Tumorigenicity Assessment of PSC-derived Products

NGOs / Consortia:

European infrastructure for translational medicine

Universities/ Research Centers:

CT-TRACS Members

(2022 data)

>100 Participants

>30 Organizations

Government & Regulatory bodies:

Medicines Evaluation Board

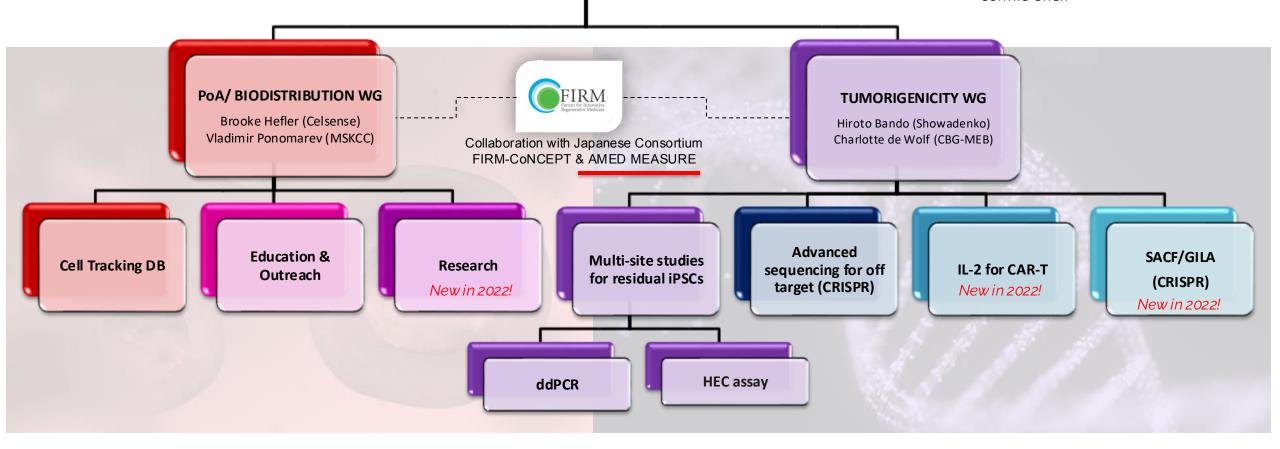
CELLUlar

Dynamics international

Celsense

- Public-Private Collaborative effort
- >100 participants
- >35 organizations

CT-TRACS (Cell Therapy: TRAcking, Circulation and Safety) Committee


To facilitate the translation of cell-based therapies to the clinic by driving the development of **tools**, **methods** and **knowledge** required to evaluate safety and fate of therapeutic cells.

Co-Chairs

- Mick Fellows (AstraZeneca)
- Tineke van der Hoorn (CBG-MEB)

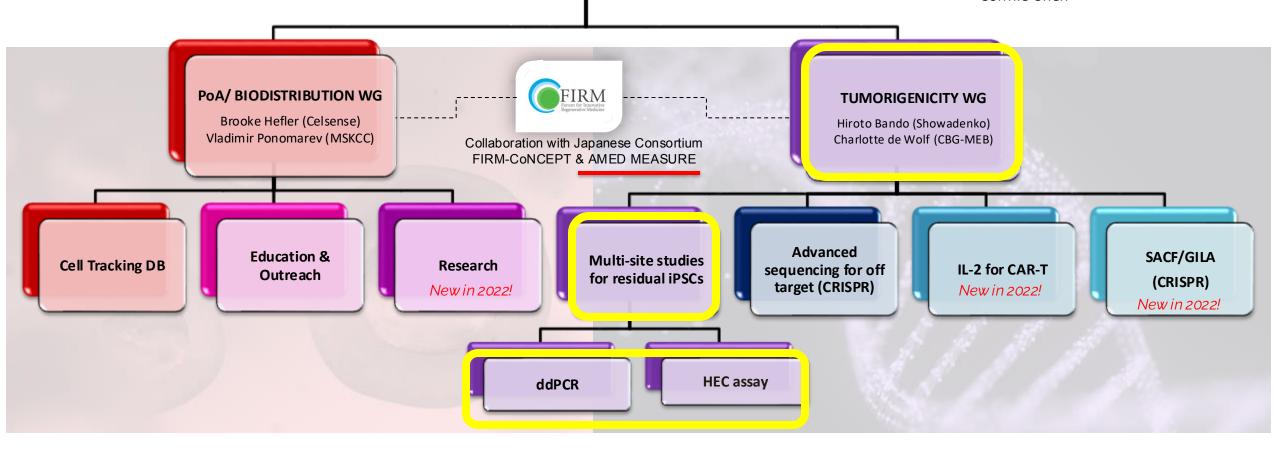
HESI Staff

- Lucilia Mouriès
- Connie Chen

https://hesiglobal.org/cell-therapy-tracking-circulation-safety-ct-tracs/

- Public-Private Collaborative effort
- >100 participants
- >35 organizations

CT-TRACS (Cell Therapy: TRAcking, Circulation and Safety) Committee


To facilitate the translation of cell-based therapies to the clinic by driving the development of **tools**, **methods** and **knowledge** required to evaluate safety and fate of therapeutic cells.

Co-Chairs

- Mick Fellows (AstraZeneca)
- Tineke van der Hoorn (CBG-MEB)

HESI Staff

- Lucilia Mouriès
- Connie Chen

https://hesiglobal.org/cell-therapy-tracking-circulation-safety-ct-tracs/

Position Paper of HESI CT-TRACS Tumorigenicity WG

Addressing Challenges & Needs

Cytotherapy, 2019; 21: 1095-1111

REVIEW

Tumorigenicity assessment of cell therapy products: The need for global consensus and points to consider

Y. SATO¹, H. BANDO^{2,*}, M. DI PIAZZA³, G. GOWING⁴, C. HERBERTS^{5,1}, S. JACKMAN⁶, G. LEONI⁷, S. LIBERTINI⁸, T. MACLACHLAN⁹, J.W. MCBLANE¹⁰, L. PEREIRA MOURIÈS¹¹, M. SHARPE⁷, W. SHINGLETON^{12,1}, B. SURMACZ-CORDLE⁷, K. YAMAMOTO¹³ & J.W. VAN DER LAAN³

Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, Katvasaki, Japan, FUJIFILM Corporation, Tokyo, Japan, Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut, USA, FUJIFILM Cellular Dynamics, Inc., Madison, Wisconsin, USA, Medicines Evaluation Board, Utrecht, The Netherlands, Charles River Laboratories, Horsham, Pennsylvania, USA, Celland Gene Therapy Catapult, London, UK, Novartis Institutes for BioMedical Research, Basel, Switzerland, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, USA, Medicines & Healthcare Products Regulatory Agency, Sondon, UK, Health and Environmental Sciences Institute (HESI), Washington, DC, USA, EE Healthcare, Cambridge, UK, and Takeda Pharmaceutical Company Limited, Tokyo, Japan

Chair of the EMA/CHMP Safety Working Party (at the time of publication)

Cytotherapy. 2019;21:1095-1111

Abstract

"[...]. Here, we critically review currently available *in vivo* and *in vitro* testing methods for tumorigenicity evaluation against expectations in international regulatory guidelines. We discuss the value of those approaches, in particular the limitations of *in vivo* methods, and comment on challenges and future directions. In addition, we note the need for an internationally harmonized procedure for tumorigenicity assessment of cell therapy products from both regulatory and technological perspectives".

https://www.isct-cytotherapy.org/article/S1465-3249(19)30861-8/fulltext

Multi-site Validation Studies by HESI CT-TRACS and MEASURE Consortium (FIRM-CoNCEPT & NIHS) on Test Methods for Tumorigenicity Assessment of Cell Therapy Products

- Yasuda S, Bando K, Henry MP, Libertini S, Watanabe T, Bando H, Chen C, Fujimori K, Harada K, Kuroda T, Lemmens M, Marginean D, Moss D, Mouriès LP, Nicholas N, Smart MJK, Terai O, Sato Y. Detection of residual pluripotent stem cells in cell therapy products utilizing droplet digital PCR: an international multisite evaluation study. Stem Cells Translational Medicine. 2024 (in press)
- Watanabe T, Yasuda S, Kusakawa S, Kuroda T, Furukawa H, Futamura M, Shimizu S, Morishita A, Hata S, Koeda A, Komatsu K, Sato Y. Multisite studies for optimization of a highly efficient culture assay used for in vitro detection of residual undifferentiated human pluripotent stem cells intermingled in cell therapy products. Regenerative Therapy. 2024 (in press)
- Bando K, Kusakawa S, Adachi H, Yamamoto M, Iwata M, Kitanaka A, Ogimura E, Osada T, Tamura M, Terai O, Watanabe T, Yoda T, Yotsumoto T, Zaizen K,
 Sato Y. Protocol improvement and multisite validation of a digital soft agar colony formation assay for tumorigenic transformed cells intermingled in cell
 therapy products. Cytotherapy. 2024 (in press)
- Watanabe T, Yasuda S, Chen CL, Delsing L, Fellows M, Foldes G, Kusakawa S, Pereira Mouriès L, Sato Y. International evaluation study of an HEC assay for detection of residual human pluripotent stem cells in the products. Regenerative Medicine. 2023;18:219-227.
- Hirai T, Kono K, Kusakawa S, Yasuda S, Sawada R, Morishita A, Hata S, Wakita A, Kageyama T, Takahashi R, Watanabe S, Shiraishi N, Sato Y. Evaluation of the reproducibility and positive controls of cellular immortality test for the detection of immortalized cellular impurities in human cell-processed therapeutic products. Regenerative Therapy. 2022;21:540-546.
- Watanabe T, Yasuda S, Kusakawa S, Kuroda T, Futamura M, Ogawa M, Mochizuki H, Kikkawa E, Furukawa H, Nagaoka M, Sato Y. MEASURE: Multisite studies
 for validation and improvement of a highly efficient culture (HEC) assay for detection of undifferentiated human pluripotent stem cells intermingled in cell
 therapy products. Cytotherapy. 2021;23:176-183
- Kamiyama Y, Naritomi Y, Moriya Y, Yamamoto S, Kitahashi T, Maekawa T, Yahata M, Hanada T, Uchiyama A, Noumaru A, Koga Y, Higuchi T, Ito M, Komatsu H, Miyoshi S, Kimura S, Umeda N, Fujita E, Tanaka N, Sugita T, Takayama S, Kurogi A, Yasuda S, Sato Y. **Biodistribution studies** for cell therapy products: Current status and issues. **Regenerative Therapy**. 2021;18:202-216.
- Sato Y, Bando H, Di Piazza M, Gowing G, Herberts C, Jackman S, Leoni G, Libertini S, MacLachlan T, McBlane JW, Pereira Mouriès L, Sharpe M, Shingleton W, Surmacz-Cordle B, Yamamoto K, van der Laan JW. Tumorigenicity assessment of cell therapy products: The need for global consensus and points to consider. Cytotherapy. 2019;21:1095-1111.

AGENDA

- 1. What is tumorigenicity? –The risk of tumorigenesis and its hazards–
- 2. Development of highly sensitive test methods for the detection of transformed cells in human cell therapy products
- 3. Development of highly sensitive test methods for the detection of residual pluripotent stem cells in human ES/iPS cell-derived products
- 4. How much are genomic mutations predictive of abnormal tissue formation from human iPSC-derived products after engraftment?

Potential Hazards for the Tumorigenicity Risk of Pluripotent Stem Cell-Derived Therapeutic Products

- 1. Contamination with Tumorigenic Cellular Impurities
 - a. Malignant Transformed Cells
 - b. Residual ES/iPS Cells

- Genomic Instability
 Test methods are NOT standardized/harmonized in the international community.
- 3. Cancer-Related Genomic Mutations

Currently, we have no information that enables to predict their impact in specific cell types/products.

IMPORTANT MISSING INFORMATION in the Risk Management

Further basic studies are necessary to establish test methods for sound scientific decision-making.

Potential Hazards for the Tumorigenicity Risk of Pluripotent Stem Cell-Derived Therapeutic Products

- 1. Contamination with Tumorigenic Cellular Impurities
 - a. Malignant Transformed Cells
 - b. Residual ES/iPS Cells

- 2 Genomic Instability

 Test methods are NOT standardized/harmonized in the international community.
- 3. Cancer-Related Genomic Mutations

Currently, we have no information that enables to predict their impact in specific cell types/products.

IMPORTANT MISSING INFORMATION in the Risk Management

Further basic studies are necessary to establish test methods for sound scientific decision-making.

The human body is a mosaic of different genomes

Survey finds that 'normal' human tissues are riddled with mutations.

Nature (NEWS on 06 June 2019)

https://www.nature.com/articles/d41586-019-01780-9

RESEARCH ARTICLE

RNA sequence analysis reveals macroscopic somatic clonal expansion across normal tissues

Keren Yizhak¹, François Aguet¹, Jaegil Kim¹, Julian M. Hess¹, Kirsten Kübler^{1,2,3}, Jonna Grimsby¹, Ruslana Frazer¹, Hailei Zhang¹, Nicholas J. Haradhvala^{1,2}, Daniel Rosebrock¹, Dimitri Livitz¹, Xiao Li¹, Eila Arich-Landkof^{1,2}, Noam Shoresh¹, Chip Stewart¹, Ayellet V. Segrè^{1,3,4}, Philip A. Branton⁵, Paz Polak⁶, Kristin G. Ardlie¹, Gad Getz^{1,2,3,7,*}

Science 07 Jun 2019: Vol. 364, Issue 6444, eaaw0726 DOI: 10.1126/science.aaw0726

Somatic mosaicism in normal tissues

Somatic cells can accumulate mutations over the course of an individual's lifetime. This generates cells that differ genetically at specific loci within the genome. To explore how this genetic diversity in individuals contributes to disease, Yizhak et al. developed a method to detect mutations from RNA sequencing data (see the Perspective by Tomasetti). Applying this method to Cancer Genome Atlas samples and normal samples from the Genotype-Tissue Expression (GTEx) project generated a tissue-specific study of mutation accumulation. Somatic mutations were detected in nearly all individuals and across many normal human tissues in genomic regions called cancer hotspots and in genes that play a role in cancer. Interestingly, the skin, lung, and esophagus exhibited the most mutations, suggesting that the environment generates many human mutations.

"Researchers now need to find ways to sort out which of those cells will become tumours and which are 'normal' "

Cristian Tomasetti, Johns Hopkins Medicine

¹Broad Institute of MIT and Harvard, Cambridge, MA, USA.

²Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA.

³Harvard Medical School, Boston, MA, USA.

⁴Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Boston, MA, USA.

⁵Biorepositories and Biospecimen Research Branch, Cancer Diagnosis Program, National Cancer Institute, Bethesda, MD, USA.

⁶Oncological Sciences, Icahn School of Medicine at Mount Sinai Hospital, New York, NY, USA.

⁷Department of Pathology, Massachusetts General Hospital, Boston, MA, USA.

^{*}Corresponding author. Email: gadgetz@broadinstitute.org

⁻ Hide authors and affiliations

The human body is a mosaic of different genomes

Survey finds that 'normal' human tissues are riddled with mutations.

Nature (NEWS on 06 June 2019)

https://www.nature.com/articles/d41586-019-01780-9

RESEARCH ARTICLE

RNA sequence analysis reveals macroscopic somatic clonal expansion across normal tissues

Keren Yizhak¹, François Aguet¹, Jaegil Kim¹, Julian M. Hess¹, Kirsten Kübler^{1,2,3}, Jonna Grimsby¹, Ruslana Frazer¹, Hailei Zhang¹, Nicholas J. Haradhvala^{1,2}, Daniel Rosebrock¹, Dimitri Livitz¹, Xiao Li¹, Eila Arich-Landkof^{1,2}, Noam Shoresh¹, Chip Stewart¹, Ayellet V. Segrè^{1,3,4}, Philip A. Branton⁵, Paz Polak⁶, Kristin G. Ardlie¹, Gad Getz^{1,2,3,7,*}

Science 07 Jun 2019: Vol. 364, Issue 6444, eaaw0726

Somatic mosaicism in normal tissues

Somatic cells can accumulate mutations over the course of an individual's lifetime. This generates cells that differ genetically at specific loci within the genome. To explore how this genetic diversity in individuals contributes to disease, Yizhak *et al.* developed a method to detect mutations from RNA sequencing data (see the Perspective by Tomasetti). Applying this method to Cancer Genome Atlas samples and normal samples from the Genotype-Tissue Expression (GTEx) project generated a tissue-specific study of mutation accumulation. Somatic mutations were detected in nearly all individuals and across many normal human tissues in genomic regions called cancer hotspots and in genes that play a role in cancer. Interestingly, the skin, lung, and esophagus exhibited the most mutations, suggesting that the environment generates many human mutations.

...means "we currently have no way"

"Researchers now need to find ways to sort out which of those cells will become tumours and which are 'normal' "

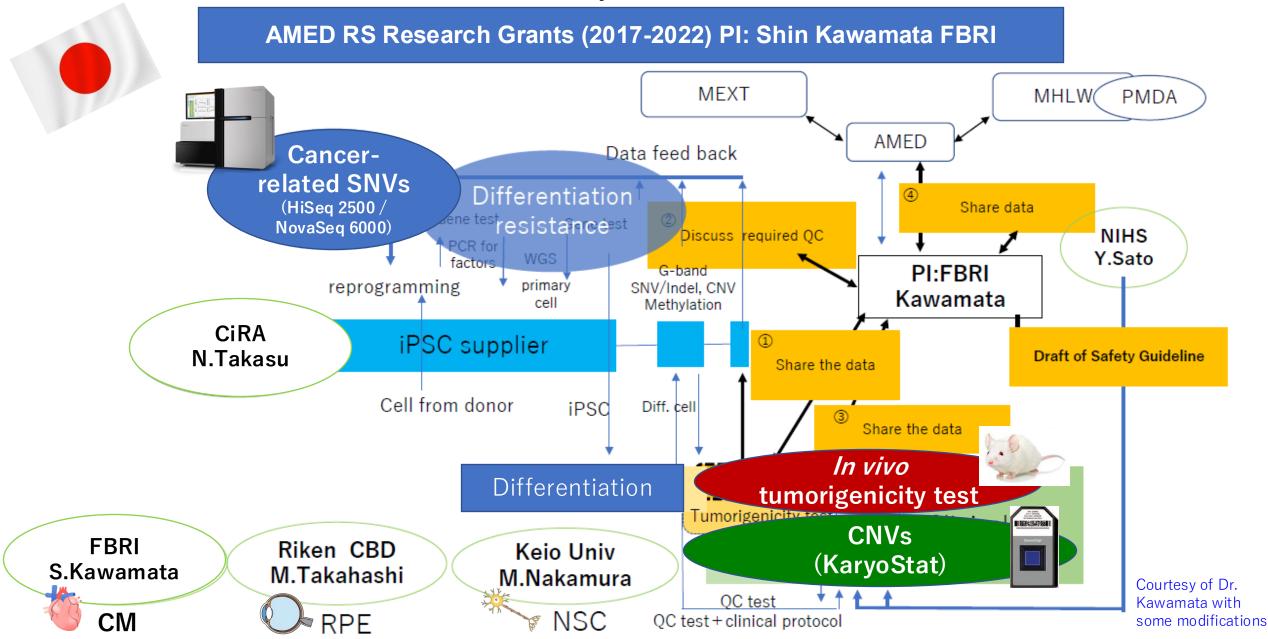
Cristian Tomasetti, Johns Hopkins Medicine

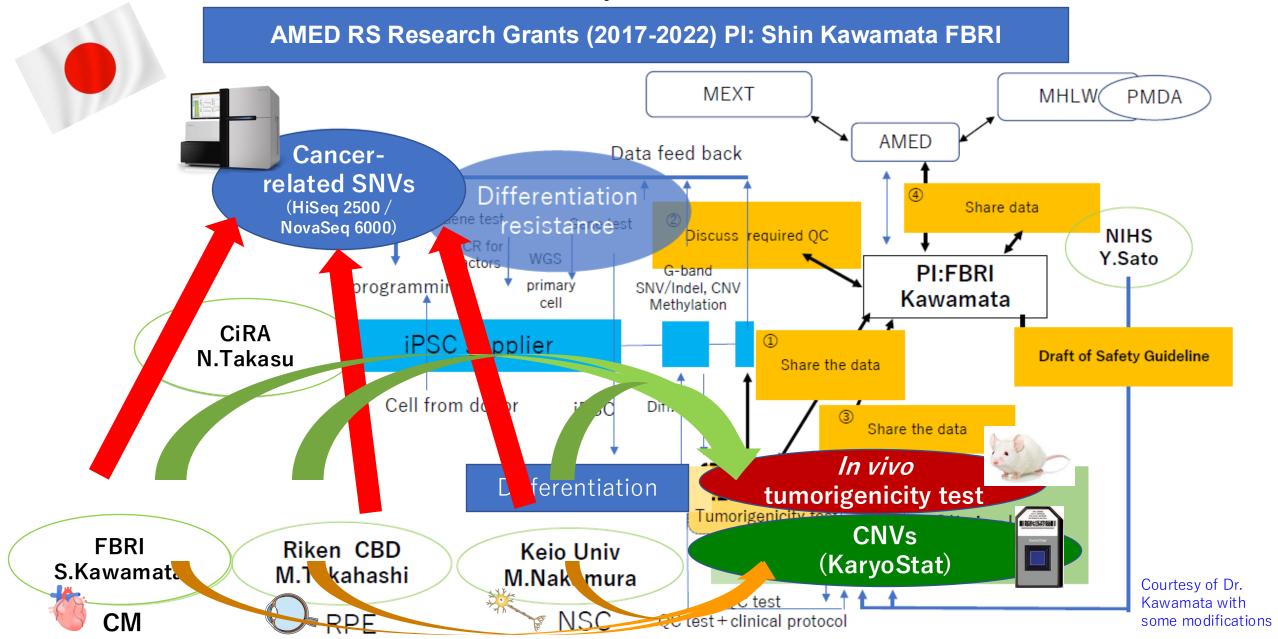
¹Broad Institute of MIT and Harvard, Cambridge, MA, USA

²Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA.

³Harvard Medical School, Boston, MA, USA.

⁴Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Boston, MA, USA


⁵Biorepositories and Biospecimen Research Branch, Cancer Diagnosis Program, National Cancer Institute, Bethesda, MD, USA.


⁶Oncological Sciences, Icahn School of Medicine at Mount Sinai Hospital, New York, NY, USA.

⁷Department of Pathology, Massachusetts General Hospital, Boston, MA, USA.

a*Corresponding author. Email: gadgetz@broadinstitute.org

Hide authors and affiliations

A.

Explanato	ory variable	Outcome variable			
Cell line	Cell typing	SNV	CNV	Histological finding	
16E84	RPEs	SNV(-)	CNV(+)	Abnormal	
16E84	CMs	SNV(+)	CNV(+)	Normal	
16E85	RPEs	SNV(-)	CNV(+)	Normal	
16E85	CMs	SNV(+)	CNV(-)	Normal	
16H12	RPEs	SNV(+)	CNV(-)	Normal	
16H12	non- CMs	SNV(+)	CNV(-)	Normal	
15M38	RPEs	SNV(-)	CNV(+)	Abnormal	
15M38	non- CMs	SNV(-)	CNV(+)	Abnormal	
1210B2	NSCs	SNV(+)	CNV(-)	Normal	
Ff-WJ	NSCs	SNV(-)	CNV(-)	Normal	
Ff-I01	RPEs	SNV(-)	CNV(+)	Abnormal	
Ff-I01	NSCs	SNV(-)	CNV(+)	Abnormal	
H9	RPEs	SNV(-)	CNV(-)	Normal	
H9	CMs	SNV(-)	CNV(-)	Normal	

Yamamoto T, et al., Stem Cells Transl Med. 2022;11:527-538. B. Explanatory variable: SNV (in COSMIC Cancer Gene Census or Shibata's List)

	ory variable ctancy	SNV(-) Normal	SNV(+) Abnormal	Discriminative ratio		Overall predictability	
Outcome	Normal	4	5	44% (Specificity)		20%	
variable	Abnormal	5	0	0% (Sensitivity)	(Sensitivity)	29%	
Predi	ctivity	44%	0%				
Overall Predictivity		29%					
	d ratio for I outcome	2.3	0.0	Correlation ratio $\eta:$ 0.56		0.56	

C. Explanatory variable: CNV ($\overline{}$: CNV \leq 3; +: CNV >4)

OI EXP		ariabioi	<u> </u>				
Explanatory variable Expectancy		CNV(-) Normal	CNV(+) Abnormal	Discriminative ratio		Overall predictability	
Lxper	ctaricy	Normai	Abilofiliai			predictability	
Outcome	Normal	7	2	78%	(Specificity)	86%	
variable	Abnormal	0	5	100%	(Sensitivity)	80%	
Predictivity Overall predictivity		100%	71%				
		86%					
	d ratio for I outcome	0.0	4.5	Correlation ratio η: 0.75		0.75	

A.

Explanato	ory variable	Outcome variable		
Cell line	Cell typing	SNV	CNV	Histological finding
16E84	RPEs	SNV(-)	CNV(+)	Abnormal
16E84	CMs	SNV(+)	CNV(+)	Normal
16E85	RPEs	SNV(-)	CNV(+)	Normal
16E85	CMs	SNV(+)	CNV(-)	Normal
16H12	RPEs	SNV(+)	CNV(-)	Normal
16H12	non- CMs	SNV(+)	CNV(-)	Normal
15M38	RPEs	SNV(-)	CNV(+)	Abnormal
15M38	non- CMs	SNV(-)	CNV(+)	Abnormal
1210B2	NSCs	SNV(+)	CNV(-)	Normal
Ff-WJ	NSCs	SNV(-)	CNV(-)	Normal
Ff-I01	RPEs	SNV(-)	CNV(+)	Abnormal
Ff-I01	NSCs	SNV(-)	CNV(+)	Abnormal
H9	RPEs	SNV(-)	CNV(-)	Normal
H9	CMs	SNV(-)	CNV(-)	Normal

Yamamoto T, et al., Stem Cells Transl Med. 2022;11:527-538. B. Explanatory variable: SNV (in COSMIC Cancer Gene Census or Shibata's List)

		ory variable ctancy	SNV(-) Normal	SNV(+) Abnormal	Discriminative ratio		Overall predictability	
	Outcome	Normal	4	5	44%	(Specificity)	200/	
	variable	Abnormal	5	0	0%	% (Sensitivity)	29%	
	Predictivity		44%	0%				
ľ	Overall Predictivity		29	9%				
	Likelihood ratio for				Corre	lation ratio η :	0.56	
		d ratio for I outcome	2.3	0.0	CNV.	may haln	nredict a	

CNVs may help predict abnormal tissue formation, including tumorigenesis, after product implantation.

C. Explanatory variable: CNV (-: CNV ≤3; +: CNV >4)

	ry variable ctancy	CNV(-) Normal	CNV(+) Abnormal	Discriminative ratio		Overall predictability	
Outcome	Normal	7	2	78% (Specificity)		000	
variable	Abnormal	0	5	100%	(Sensitivity)	86%	
Predi	Predictivity		71%				
Overall p	Overall predictivity		86%				
	d ratio for l outcome	0.0	4.5	Correlation ratio η: 0.75		0.75	

As of October 21, 2023; ** According to a newspaper report

				AS 01 OCCODE 21, 2023,	According to a ne-	wapaper report
Final Product	Starting Cells	Target Disease	Institution(s)	Type of Clinical Trial	IMP Approval	FIH Trial
Retinal pigment epithelial cells	Autologous iPSCs	Exudative age-related macular degeneration	FBRI, RIKEN	Non-commercial clinical research under the RM Safety Act	2013	2014
Retinal pigment epithelial cells	Allogeneic iPSCs	Exudative age-related macular degeneration	Kobe City Medical Center, Osaka Univ., Kyoto Univ., RIKEN	Non-commercial clinical research under the RM Safety Act	2017	2017
Dopaminergic neural progenitor cells	Allogeneic iPSCs	Parkinson's disease	Kyoto Univ.	Clinical trial under the PMD Act	2018	2018
Platelets	Autologous iPSCs	Aplastic anemia	Kyoto Univ.	Non-commercial clinical research under the RM Safety Act	2018	2019
Corneal epithelial cells	Allogeneic iPSCs	Corneal epithelial stem cell exhaustion	Osaka Univ.	Non-commercial clinical research under the RM Safety Act	2019	2019
Hepatocytes	ESCs (Allogeneic)	Congenital urea cycle disorder	NCCHD	Clinical trial under the PMD Act	2019	2019
Cardiomyocytes	Allogeneic iPSCs	Ischemic cardio myopathy	Osaka Univ.	Clinical trial under the PMD Act	2019	2020
Neural progenitor cells	Allogeneic iPSCs	Subacute spinal cord injury	Keio Univ. etc.	Non-commercial clinical research under the RM Safety Act	2019	2021
Retinal photoreceptor cells	Allogeneic iPSCs	Retinitis pigmentosa	Kobe City Eye Hospital	Non-commercial clinical research under the RM Safety Act	2020	2020
NKT cells	Allogeneic iPSCs	Recurrent or advanced head and neck cancer	Chiba Univ., RIKEN	Clinical trial under the PMD Act	2020	2020
Cartilage	Allogeneic iPSCs	Knee articular cartilage injury	Kyoto Univ.	Non-commercial clinical research under the RM Safety Act	2020	(2021)**
Retinal pigment epithelial cells	Allogeneic iPSCs	Retinal pigment epithelial insufficiency	Kobe City Eye Hospital	Non-commercial clinical research under the RM Safety Act	2021	2021
Innate lymphoid Cells/NK cells Expressing GPC3-CAR	Allogeneic iPSCs	Ovarian cancer	Kyoto Univ., NCRI	Clinical trial under the PMD Act	2021	2021
Platelets	Allogeneic iPSCs	Thrombocytopenia	Megakaryon, Kyoto Univ., CiRA-F	Clinical trial under the PMD Act	2021	2022
Corneal endothelial cells	Allogeneic iPSCs	Bullous keratopathy	Keio Univ.	Non-commercial clinical research under the RM Safety Act	2021	2023
Cardiomyocytes	Allogeneic iPSCs	Ischemic Cardiomyopathy	Heartseed, Novo Nordisk	Clinical trial under the PMD Act	2021	2023

Clinical Applications of iPSC/ESC-Derived Products in Japan
in Non-Commercial Clinical Researches under the RM Safety Act and Commercial Clinical Trials under the PMD ACT

Allogeneic

iPSCs

Subacute spinal cord injury

Neural progenitor cells

As of October 21, 2023; ** According to a newspaper report
pe of Clinical Trial IMP Approval FIH Trial

2019

2021

Non-commercial clinical research

under the RM Safety Act

Final Product Starting Cells **Target Disease** Institution(s) Type of Clinical Trial **IMP Approval Autologous Exudative age-related** Non-commercial clinical research Patinal pigment epithelial cells FBRI, RIKEN 2013 2014 *iPSCs* macular degeneration under the RM Safety Act Allogeneic Exudative age-related Kobe City Medical Center, Non-commercial clinical research oigment epithelial cells 2017 Osaka Univ., Kyoto Univ., RIKEN iPSCs macular degeneration under the RM Safety Act paminergic neural Allogeneic Clinical trial Parkinson's disease Kyoto Univ. 2018 progenitor cells iPSCs under the PMD Act Non-commercial clinical research Autologous **Platelets** Aplastic anemia Kyoto Univ. 2018 iPSCs under the RM Safety Act Non-commercial clinical research Allogeneic Corneal epithelial stem cell eal epithelial cells Osaka Univ. 2019 iPSCs under the RM Safety Act exhaustion **ESCs** Clinical trial Hepatocytes Congenital urea cycle disorder NCCHD 2019 (Allogeneic) under the PMD Act Clinical trial Allogeneic Cardiomyocytes Ischemic cardiomyopathy Osaka Univ. 2019 iPSCs under the PMD Act

https://nd.natureasia.com/figure/4438/56992/phone/1

https://english.kyodo.news. net/news/2020/01/47a1ba1 f19f1-japan-researchersconduct-worlds-1sttransplant-of-ips-heartmuscles.html

Non-commercial clinical research Allogeneic Retinal photoreceptor cells Retinitis pigmentosa Kobe City Eye Hospital 2020 iPSCs under the RM Safety Act Allogeneic Recurrent or advanced head Clinical trial **NKT** cells Chiba Univ., RIKEN 2020 under the PMD Act iPSCs and neck cancer Non-commercial clinical research Allogeneic Cartilage Knee articular cartilage injury Kvoto Univ. 2020 iPSCs under the RM Safety Act Allogeneic Retinal pigment epithelial Non-commercial clinical research oigment epithelial cells Kobe City Eye Hospital 2021 iPSCs insufficiency under the RM Safety Act mphoid Cells/NK cells Clinical trial Allogeneic Ovarian cancer Kyoto Univ., NCRI 2021 ressing GPC3-CAR iPSCs under the PMD Act Allogeneic Clinical trial Platelets Thrombocytopenia Megakaryon, Kyoto Univ., CiRA-F 2021 2022 iPSCs under the PMD Act Allogeneic Non-commercial clinical research al endothelial cells **Bullous keratopathy** Keio Univ. 2021 2023 iPSCs under the RM Safety Act Allogeneic Clinical trial Cardiomyocytes Ischemic Cardiomyopathy Heartseed, Novo Nordisk 2021 2023 iPSCs under the PMD Act

Keio Univ. etc.

https://www.sankei.com/ar ticle/20200521-B5I5HI55EBI6XMQ5AVIKYLX QVY/photo/UDRYD4AHVFJP DHGFB54X2ZSB2Q/

https://japanforward.com/osakauniversity-team-does-

transplant/

worlds-first-successful-ips-

cell-derived-corneal-

Our research has contributed to clinical applications of PSC-derived products through the development of test methods for the assessment of their quality and safety.

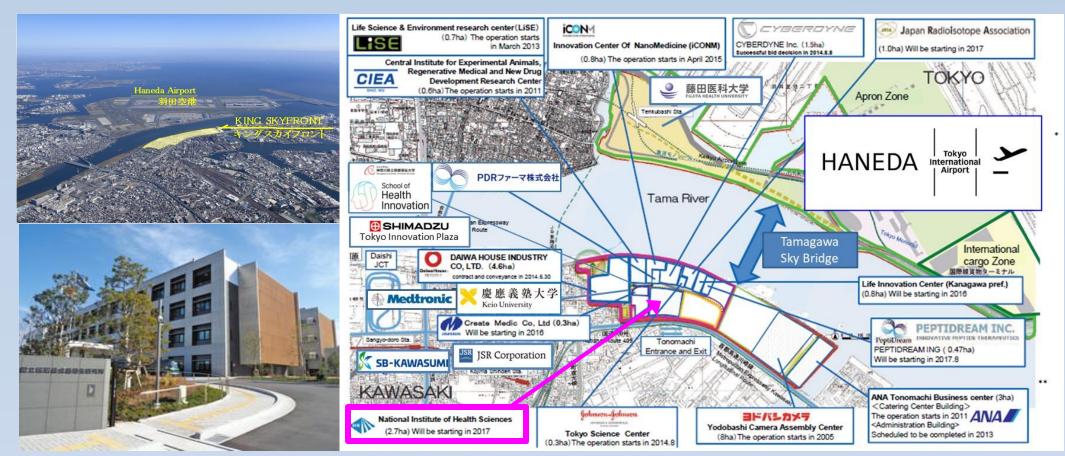
ACKNOWLEDGMENTS

I would like to express my sincere appreciation to:

- The member companies of the Committee for Non-Clinical Safety Evaluation of Pluripotent Stem Cells-derived Therapeutic Products, the Forum for Innovative Regenerative Medicine (FIRM-CONCEPT)
- The member companies of the Japan Association of Contract Laboratories for Safety Evaluation (JACL) and the other Japanese companies that participated in MEASURE 1 or MEASURE 2 Projects
- Global public and private sector organizations that are participating or participated in HESI CT-TRACS joint research
- Our collaborators in the AMED Research Project for Regulatory Harmonization and Evaluation of Medical Products
- Our collaborators (Dr. Shin Kawamata, etc.) in the AMED Research Project for Practical Application of Regenerative Medicine
- The Secretariat of the Forum for Innovation in Regenerative Medicine (FIRM)
- AMED Regulatory Science Division and Regenerative Medicine R&D Division
- PMDA Regenerative Medicine Products Review Division
- The Medical Device Review and Management Division, Ministry of Health, Labour and Welfare (MHLW),

and

All of my excellent and hard-working colleagues at the Division of Cell-Based Therapeutic Products, National Institute of Health Sciences



Thank you for your attention!

Yoji SATO, Ph.D.

Head, Division of Drugs
National Institute of Health Sciences
3-25-26 Tonomachi, Kawasaki Ward, Kawasaki City 210-9501, Japan
E-mail: yoji@nihs.go.jp

