THE FUTURE OF IN VITRO SCREENING IN THE DEVELOPMENT OF NEW DRUGS

Hajime Kojima, JaCVAM, NIHS, Japan

3Rs of animal use (Russel and Burch 1959)

- Reduction (of animal use)
- Refinement (to lessen pain or distress and to enhance animal well-being)
- Replacement (of an animal test with one that uses non-animal systems or phylo-genetically lower species)

Cosmetics Industry and the 7th Amendment of the EU Cosmetics Directive

- EU: 2.000 companies, 60 billion € turnover
- EU: 5.000 new products per year, 25% turnover with products released within last 6 months
- Marketing ban since 2003 for testing finished products in animals or not using ECVAM-validated methods
- Phasing out testing in animals and stepwise marketing ban in 2009 and 2013

7th Amendment of the EU Cosmetics Directive 76/768/EEC 2003

Ban of testing in animals

immediately -> since 2003

Testing of - finished products

Testing for

- phototoxic potential
- skin penetration
- skin corrosion

Intensive research will be required to reach validation and regulatory acceptance of in vitro test for the following endpoints 31. Dec. 2009 - eye irritation

- skin irritation

31. Dec. 2013

- skin sensitization ?
- embryotoxicity ?
- repeat dose assay?

The Transatlantic Divide

Top-down development of new toxicological tools

3Rs

Bottom-up support to alternative methods and legislative pressure

Concordance of the Toxicity of Pharmaceuticals in Humans and in Animals

Harry Olson,¹ Graham Betton,² Denise Robinson,³ Karluss Thomas,³ Alastair Monro,¹ Gerald Kolaja,⁴ Patrick Lilly,⁵ James Sanders,⁶ Glenn Sipes,⁷ William Bracken,⁸ Michael Dorato,⁹ Koen Van Deun,¹⁰ Peter Smith,¹¹ Bruce Berger,¹² and Allen Heller¹³

¹Pfiaer Inc., Groton, Connecticut, ^aAstraZennea Pharmaceuticals, Maecledield, England, ^aILSI-HESI, Washington, DC, 20036; ^aPharmacia & UpJohn, Kalamano, Michigan; ^aBoehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut, ^aRhone-Poulenc Rorer, Collegeville, Pennsylvania; ^aUniversity of Arizona, Tucson, Arizona; ^aAbbott Laboratories, Abbott Park, Illinois; ^aEli Lilly and Co., Greenfield, Indiana; ^aJanssen Research Foundation, Beerse, Belgium; ^aMonsanto-Searle Laboratories, Skokie, Illinois; ^aSanofi-Synthelabo, Inc., Malvern, Pennsylvania; and ^aBayer Corporation, West Haven, Connecticut

Received January 22, 2000

Key factors for good in vitro assay

- Test definition based on MoA, WoE
- Valuable Cells
- Optimal biomarker
- High-through put
- Niche (environment) and 3D culture
- Low cost
- 3Rs

Reliability and relevance

Test definition

Animal model and in vitro

 Miniature BlackBox Approach requires "diagnostic" process similar to *in vivo* studies. Until cellular symptoms are well understood to the level of *in vivo* diagnosis, the validation process will be virtually endless.

(2) Mechanism-excision type methods always have Positive controls and Negative controls. With which the validation process is easy and comcise.

The NTP Roadmap are consistent with the recent NAS Report

TOXICITY TESTING IN THE 21ST CENTURY: A VISION AND STRATEGY

0 2007 NRC Report:

- Calls for transforming toxicology: "from a system based on whole-animal testing to one founded primarily on in vitro methods that evaluate changes in biologic processes using cells, cell lines, or cellular components, preferably of human origin."
- Envisions pathway-based toxicology, where pathway perturbations are used to predict adverse effects
- **2009 NRC report**: *"the realization of the promise [of the 2007 report] is at least a decade away"*

National Research Council. 2007. Toxicity Testing in the Twenty-first Century: A Vision and a Strategy. Washington, DC: National Academy of Sciences. Available: http://books.nap.edu/catalog.php?record_id=11970

Options for Future Toxicity Testing Strategies

	otion I Vivo	Option II Tiered In Vivo	Option III In Vitro/In Vivo	Option IV In vitro
Ani	imal biology	Animal biology	Primarily human biology	Primarily human biology
Hig	gh doses	High doses	Broad range of doses	Broad range of doses
Lov	w throughput	Improved throughp	ut High and medium throughput	High throughput
Exp	pensive	Less expensive	Less expensive	Less expensive
Tim	ne consuming	Less time consuming	Less time consuming	Less time consuming
	lative large mber of animals	Fewer animals	Substantially fewer animals	Virtually no animals
Api	ical endpoints	Apical endpoints	Perturbations of toxicity pathways	Perturbations of toxicity pathways
		Some <i>in silico</i> and <i>in vitro</i> screens	<i>In silico</i> screens possible	In silico screens

Perturbation of Toxicity Pathways

Toxicant Molecular Cellular Organ Individual Population Initiating event Responses Responses Responses Responses Whole animal, Receptor screening assays, Population Computational In vitro models, Whole Cell line assays, genomics, chemistry, modeling, Computational animal QSAR proteomics, metabolomics, field models, omics, Toxicology monitoring biochemistry metabolomics Impaired Reduced E2. vitellogenesis **Reduced fecundity** Vtg synthesis Aromatase inhibition -pa. 19.33 Screening for Population Mechanistic Pathway and Predicted toxicological effects and network impacts impact modeling effect

chemicals

AOP and alternative animals in human health assessment

ToxCast & Tox21 Chemical Inventories

Pesticides, cosmetics and personal care products, fragrances, antimicrobials, food additives, failed drugs, chemicals of concern & green alternatives, industrial HPV & MPV, reference compounds (endocrine, repro/devtox, etc.) 14

SOURCE: Ann Richard, NCCT

Valuable cells

OECD TG using cell lines (Year 2000 or later)

Method	International acceptance
3T3 NRU Phototoxicity Test	OECD TG 432 (2004)
In vitro Micronucleus assay	OECD TG 487 (2010)
H295R Steroidgenesis assay	OECD TG 456 (2011)
BG1Luc Estrogen Receptor Transactivation Test Method for Identifying Estrogen Receptor Agonists and Antagonists	OECD TG 457 (2012)
Performance-Based Test Guideline for Stably Transfected Transactivation In Vitro Assays to Detect Estrogen Receptor AgonistsTest	OECD updated TG 455 (2012)
Fluorescein Leakage (FL) test method	OECD TG 460 (2012)
<i>In vitro</i> skin irritation testing <i>: reconstructed human</i> <i>epidermis (RHE) test method</i>	OECD TG updated 439 (2013)
In vitro skin corrosion: reconstructed human epidermis (RHE) test method	OECDTG Updated 431(2013)

Use of human embryonic stem cells for novel toxicity testing approaches

CALC Conference together with the **EUSAAT** congress

European Society for Alternatives to Animal Testing

Afternoon Session					
Chairs	Time	Title	Speaker		
	13:45-14:30	First panel discussion: How can the ESNATS data be used to define mechanisms of action and/or AOPs	Chair: Thomas Hartung, CAAT US- Baltimore - Jan Hengstler, IFADO, DE - Robert Kavlock, EPA, US - Jos KleinJans, University of Maastricht, NL		
intea, IT niversity of Cologne, DE	14:30-15:00	Enhancing the readout of the embryonic stem cell test with molecular approaches	Aldert Piersma, RIVM, NL-Bilthoven		
	15:00-15:30	Interspecies comparison of pathways contributing to neurodevelopmental toxicity: Neurospheres as test systems which model processes involved in brain development	Ellen Fritsche, Leibniz Research Institute for Environmental Medicine, DE- Düsseldorf		
	15:30-16:00	Transforming the Conduct of Toxicology in the US : the Tox21 Program	Robert Kavlock, US Environmental Protection Agency, US-Washington		
	16:00-16:30	Coffee break and posters			
	16:30-17:00	Predictive models and computational embryology	Thomas Knudsen, US Environmental Protection Agency, US-Research Triangle Park		
	17:00-17:30	EPAA calls for a "Stem Cells in Safety Testing" forum to keep fluent communication	Beatriz Silva-Lima, EPAA stem cell group, BE-Brussels 17		
antea, IT Iniversity	17:30-18:00	Data infrastructure for chemical safety	Jos Kleinjans, University of Maastricht,		

Assays for Hand1-luc EST

Hand1-ES (KOB1) cells

Optimal biomarker

E15 Definitions for **Genomic Biomarkers**, Pharmacogenomics, **Pharmacogenetics, Genomic Data and Sample Coding** Categories

U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) Center for Biologics Evaluation and Research (CBER)

> April 2008 ICH

Biomarkers and their Value Proposition

Biomarkers will add ~10% on to clinical study costs but deliver ~90% of the NDA data package

Progression of Tubular Damage

Loss of polarity, tight junction, integrity, cell-substrate adhesion, degeneration of brush border

On-Time.®

RESEARCH

28th JSSX Annual Meeting in Tokyo The Japanese Society for the Study of Xenobiotics

莱物動態学会 第28回年会 東京

創薬イノベーションを目指した 薬物動態研究の展開

<u>シンポジウム(Symposium)3</u>

 $9:30 \sim 12:00$

薬物動態・毒性研究におけるバイオマーカーの選択と応用 Toxicology DIS Part 1, Biomaker Discovery and Evaluation in DMPK and Toxicology Studies

Organizer・Chairs: 横井 毅 |名古屋大学大学院医学系研究科||統合医薬学領域トキシコゲノ ミクス Tsuyoshi Yokoi Department of Drug Safety Sciences, Nagoya University Graduate School of Medicine Chairs: 堀井 郁夫 ファイザー株式会社 Ikuo Horii Pfizer Japan Inc.

High-through put

Human Artificial Chromosome vector Novel technology for gene transfer into cells

- No integration in genomic DNA
- One copy and stable
- Physiological regulation
- No over-expression/no silencing

(1) High quality \rightarrow Validation, development of guidelines **Expression of transgenes** in a consistent manner Easy to insert genes (reduction in time)

(2) Efficient analysis \rightarrow Transfer of multiple genes **Multi-color bio-imaging**

Multicolor and secretion luciferase assay system An effective screening system

Simultaneous monitoring of 3 gene expressions

 Multiple gene transcription activity assay system. JP4385135, US7572629, CN1784496, EP1784496

Monitoring of 2 gene expressions in secreta

It can measure Secretion luciferases GLuc & CLuc luciferase activities CLuc in culture medium (in vitro), blood or urine (in vivo). GLuc Secreted extracellularly

• Luciferin luminescent substrate of marine ostracod crustacean and method for production thereof. JP4915955, US7989621, US8343729

The system can measure promoter activities of two targets genes and one internal control gene in HTP system.

1.0E+06 0.0E+00 90+30'5' Activity 1.0E+06 0.0E+00 .€2.0E+06 1.0E+06

<u>Example of toxicity test for immunology using a multireporter assay</u> Generation of T cells stably express SLG, SLO and SLR enzymes under two marker gene promoters and internal control gene promoter.

Niche (environment) and 3D culture

Background-1: Collagen vitrigel membrane (CVM)

Cell Culture Technique

(three dimensional culture / stem cell differentiation)

Kidney-like structure (In Vitro)

Transgenic mice Relationships between *in vitro* and *in vivo* response →Trans-chromosomic mice : Novel Transgenic mice using

[Chromosome engineering] & [Developmental engineering]

Creation of trans-chromosomic Chimera mice with the HAC vector

In vitro generation of organs derived from pluripotent stem cells is very difficult since it requires reproducing various types of different component cells and three-dimensional structures →Target tissues (or cells) can be created using embryonic development within individual body.

Reliability and relevance

Test Method Evolution and Translation Process: Concept to Implementation Stage Objective

武田薬品は、「優れた医薬品の創出を通じて人々の健康と医療の未来に貢献する」というミッションのもと 優れた新薬を創出するため「革新への挑戦」を追求しています。 この目的を達成するためアカデミアからユニークな細胞アッセイを募集致します。

Test method validation process

Summary

In vitro test methods for screening safety and efficacy of new drugs contribute to lower development costs, more accurate predictions of side effects, and increased animal welfare. There are several newly developed assays based on mechanisms of action (MoA) and preclinical biomarkers that meet the need for simple and easy-to-use test methods capable of high throughput and offering good intra-laboratory repeatability.

Dews texts dummy texts news texts dummy texts news texts dummy texts (2009 7 3)