- 1 注. この論文は、日本食品化学学会誌に 2020年 11月 13
- 2 日に受理され、Vol.28(1)(2021)に掲載予定のものである。
- 3 その最終原稿を、日本食品化学学会誌編集委会の許諾を
- 4 受けてここに掲載する。

- 6 [資料]
- 7 ヘリウムセーバーインジェクターを用いた GC-MS/MS に
- 8 よる有機塩素系農薬測定の検討

9

10 堤 智昭、足立利華、穐山 浩

11

12 国立医薬品食品衛生研究所

13

- 14 Evaluation of GC-MS/MS analysis of organochlorine
- 15 pesticides using the Helium Saver injector

16

17

18 Tomoaki Tsutsumi, Rika Adachi, Hiroshi Akiyama

19

20 Division of Foods, National Institute of Health Sciences

2 1

- 22 連絡先: 〒210-9501 神奈川県川崎市川崎区殿町3-2
- 23 5 2 6 国立医薬品食品衛生研究所食品部 堤 智昭

2 4

25 Corresponding author: Tomoaki Tsutsumi, Division of

- 26 Foods, National Institute of Health Sciences, 3-25-6,
- 27 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-
- 28 9501, Japan

3 0

31 Abstract

- The Helium (He) Saver injector can dramatically reduce
- 33 consumption of He gas in GC-MS(/MS) analysis in
- 34 comparison to a conventional split/splitless (SSL)
- 35 injector using helium carrier gas. The He Saver injector
- 36 was evaluated in comparison with SSL injector using
- 37 organochlorine pesticides including their metabolites (10
- 38 analytes). The standard solutions (1 ng/ml and 100
- 39 ng/mL) of the analytes were analyzed 5 times each by GC-
- 40 MS/MS using the two injectors. Retention times, peak
- 41 shapes and peak areas of the analytes were compared
- 42 between the two injectors. The retention times obtained
- 43 by the He Saver injector were in good agreement with
- 44 those obtained by the SSL injector. The selected reaction
- 45 monitoring chromatograms from both the injectors showed
- 46 no remarkable differences in peak profiles. The average
- 47 peak areas using the He Saver injector were close to those
- obtained using the SSL injector (94-115% of the SSL
- 49 injector). Although there were statistically significant
- 50 differences of the peak areas in three of the ten analytes

- using a two-sided t-test (p < 0.05), these differences were
- 52 not considered to be important in a practical analysis.
- 53 Peak area ratios for the analytes (qualifier
- 54 ions/quantifier ions) using the He Saver injector were
- also close to those using the SSL injector (94-104% of
- 56 the SSL injector). Overall results indicate that the He
- 57 Saver injector can be used for as an alternative for a
- 58 conventional SSL injector and contribute to a reduction
- of helium consumption in GC-MS(/MS) analysis.

- 61 Key words: ヘリウムガス不足、ヘリウムセーバーインジ
- 62 ェクター、有機塩素系農薬、ガスクロマトグラフ-タンデ
- 63 ム型質量分析計
- 64 helium shortage, Helium Saver injector, organochlorine
- 65 pesticides, GC-MS/MS

- 67 I 緒言
- 68 GC-MS(/MS)を用いた残留農薬等の試験法では、キャリ
- 69 ヤーガスとしてヘリウムが一般に使用される。日本はヘ
- 70 リウムを全量輸入に依存していることや、ヘリウムの産
- 71 出国は限られており生産が不安定であることから、度々、
- 72 供給不足に陥っている ^{1,2)}。また、中長期的にみても、へ
- 73 リウムの供給が大幅に改善されることは期待できない。
- 74 これらの対応策として、水素や窒素が GC-MS(/MS)のキャ
- 75 リャーガスとして利用されている。しかし、水素は可燃

```
76
  性が極めて高く、取り扱いに注意を要する。また、水素を
  使用した場合、真空ポンプの排気効率が下がるため、
77
78
  MS(/MS)装置の真空度が低下し測定感度が悪化する。さら
  に化合物によってはマススペクトルのパターンがヘリウ
79
80
   ム使用時と大きく異なり、定量イオンと定性イオンのイ
  オン強度比がヘリウム使用時と一致しない可能性が指摘
8 1
8 2
   されている 3)。一方、窒素は最適な分離が得られる線速
83
  度がヘリウムや水素よりも遅いため、測定に時間を要す
8 4
   る欠点がある。また、窒素は電子イオン化法においてイ
  オン化され易いため、測定対象化合物のイオン化率が減
8 5
  少し、測定感度の悪化につながる。従って、キャリヤーガ
86
87
  スをヘリウムから水素や窒素に変更する際には、上記の
  問題点を踏まえた上で実施する必要があると考えられる。
88
89
    GC-MS(/MS)におけるヘリウムの使用量を削減する一
  つの方法として、ヘリウムセーバーインジェクター(以
90
   下、He セーバー注入口) 4)の利用が考えられる。汎用さ
91
  れているスプリット/スプリットレスインジェクター(以
92
  下、SSL注入口)では、キャリヤーガスであるヘリウムが
93
  カラムだけでなくセプタムパージライン及びスプリット
94
   ラインにも供給されるため、ヘリウムの消費量が非常に
95
  多くなる。一方、Heセーバー注入口では、セプタムパー
96
  ジライン及びスプリットラインにヘリウムの代わりに窒
97
  素を供給するため、SSL注入口よりもヘリウムの消費量
98
  を大幅に削減できる。また、Heセーバー注入口では試料
99
  が窒素ガスと共にカラムに注入された後は、ヘリウムガ
100
```

- 101 スがカラムに供給されることから、ヘリウムをキャリヤ
- 102 ーガスに用いた SSL 注入口と同等の測定が期待できる。
- 103 しかし、He セーバー注入口と SSL 注入口における農薬の
- 104 測定結果を比較検討した報告は無い。
- 105 有機塩素系農薬は低極性物質であり、LC-MS(/MS)によ
- 106 るイオン化が困難であることが多く、依然として SSL 注
- 107 入口を用いた GC-MS(/MS)による測定が一般である。本研
- 108 究では He セーバー注入口を用いた GC-MS/MS による有
- 109 機塩素系農薬の測定について検討した。測定対象とした
- 110 有機塩素系農薬は、「GC/MS による農薬等の一斉試験法
- 111 (農作物)」5)の別表に含まれる有機塩素系農薬(代謝物
- 112 含む)に、関連物質である α -ベンゼンヘキサクロリド
- 113 (BHC) を加えた合計 10 化合物とした。He セーバー注入
- 114 口を使用した際の、これらの化合物の測定に与える影響
- 115 (保持時間、ピーク形状、ピーク面積値) について、SSL
- 116 注入口を用いた場合と比較検討した。

1 1 7

118 【 実験方法

- 119 1. 試薬
- 120 アセトン及び n-ヘキサンは関東化学 ㈱ 社製の PCB 分析
- 121 用を用いた。α-BHC、β-BHC、δ-BHC、cis-クロルデン、
- 122 trans-クロルデン、オキシクロルデン、ヘプタクロル、ヘ
- 123 プタクロルエポキシド (異性体 A)、ヘプタクロルエポキ
- 124 シド(異性体 B)は Dr. Ehrenstorfer GmbH 社製を用いた。
- 125 γ BHC は富士フイルム和光純薬製を用いた。各標準品を

- 126 精秤し、アセトン及び n-ヘキサン (1:1) 混液に溶解し
- 127 て 1 μg/mL 、100 ng/mL、及び 1 ng/mL の濃度に調製し
- 128 た。
- 129 2. 装置
- 130 GC-MS/MS: TSQ 9000 トリプル四重極 GC-MS/MS システ
- 131 ム (Thermo Scientific 社製)
- 132 He セーバー注入口: Instant Connect Helium Saver Injector
- 133 (Thermo Scientific 社製)
- 134 SSL 注入口: Instant Connect Split/Splitless Injector
- 135 module (Thermo Scientific 社製)
- 136
- 137 3. GC-MS/MS 測定条件
- 138 1)GC条件
- 139 カラム: Agilent Technologies 社製のキャピラリーカラ
- 140 ム DB-5MS UI(内径 0.25 mm、長 さ 30 m、膜厚 0.25 μm)
- 141 ガードカラム: Agilent Technologies 社製の不活性化キ
- 142 ャピラリーカラム (内径 0.25 mm、長さ 1.5 m)
- 143 カラム温度:50℃(1 min) 25℃/min 125℃(0 min)
- $144 10^{\circ}\text{C} / \text{min} 300^{\circ}\text{C} (10 \text{ min})$
- 145 キャリヤーガス: ① He セーバー注入口、ヘリウム (試
- 146 料注入時は窒素) ② SSL 注入口、ヘリウム
- 147 カラム流量:1 mL/min
- 148 注入□温度:250℃
- 149 注入量: 2 μL
- 150 注入方式: スプリットレス注入

- 151 スプリットレス時間: 1 min
- 152 セプタムパージ流量: 5.0 mL/min
- 153 スプリット流量: 50 mL/min
- 154 ガスセーバー流量 (開始時間): 20 mL/min (1.5 min)
- 155
- 156 2) MS/MS条件
- 157 イオン源温度:230℃
- 158 トランスファーライン温度:300℃
- 159 イオン化電圧: 70 eV(EIポジティブ)
- 160 測定モード: Selected reaction monitoring (SRM) モー
- 161 ド (モニターイオンは Table 1 を参照)
- 162
- 163 【1】 結果及び考察
- 164 1. SRM 条件の検討
- 165 SSL 注入口を使用して、測定対象化合物の SRM 条件を
- 166 決定した。各化合物の標準溶液(1 μg/mL)をスキャン及
- 167 びプロダクトスキャンした際のイオン強度を指標にして、
- 168 最も強いものを定量イオンに、次にイオン強度が強いも
- 169 のを定性イオンとして選択した(Table 1)。なお、保持時
- 170 間が非常に近いオキシクロルデンとヘプタクロルエポキ
- 171 シド (異性体 B) については、選択した SRM 条件で同じ
- 172 質量のプロダクトイオンが観察された (データ未掲載)。
- 173 互いの測定への干渉が認められたことから、SRM条件は
- 174 全ての測定対象化合物を含めて設定したが、以降の検討
- 175 においてオキシクロルデンとヘプタクロルエポキシド

- 176 (異性体 B) を同時に測定することは避けた。
- 177
- 178 2. 保持時間及びピーク形状の比較
- 179 He セーバー注入口及び SSL 注入口を使用した場合の、
- 180 測定対象化合物の保持時間及びピーク形状について比較
- 181 した。測定対象化合物を含む溶液(1 ng/mL及び 100 ng/mL)
- 182 を 5 回測定した際の、定量イオンのピーク保持時間を
- 183 Table 2 に示した。He セーバー注入口を使用した場合の
- 184 各測定対象化合物の保持時間の平均値は、SSL 注入口を
- 185 用いた場合と比較して、0.01分(0.6秒)以内の差に収ま
- 186 っており非常に良く一致していた。RSD(%)についても、
- 187 He セーバー注入口及び SSL 注入口ともに 0.05%以内であ
- 188 り、バラツキについても大きな違いは認められなかった。
- 189 また、He セーバー注入口と SSL 注入口を使用した際の、
- 190 定量イオンの代表的なクロマトグラム (1 ng/mL) を Fig.
- 191 1 に示した。 He セーバー注入口を使用した場合の測定対
- 192 象化合物のピーク形状は、SSL 注入口を使用した場合と
- 193 ほぼ同様であり、ピーク割れ、テーリング等は認められ
- 194 なかった。なお、定性イオンのピーク保持時間及びピー
- 195 ク形状についても同様の結果であった(データ未掲載)。
- 196
- 197 3. ピーク面積値の比較
- 198 He セーバー注入口及び SSL 注入口を使用した場合の、
- 199 ピーク面積値について比較した。測定対象化合物を含む
- 200 溶液(1 ng/mL 及び 100 ng/mL)を 5 回測定した際の、定

```
201
   量 イ オ ン の ピ ー ク 面 積 値 を Table 3 に 示 し た 。 He セ ー バ
   一注入口を使用した場合の各測定対象化合物のピーク面
202
203
   積値の平均値は、SSL注入口を用いた場合の 93~115%の
204
   範囲に収まっており、大きな違いは認められなかった。
205
   δ-BHC、ヘプタクロル、及びオキシクロルデンについて
   は、両注入口のピーク面積値の平均値に統計学的な有意
206
207
   差 が 認 め ら れ た ( t 検 定 ( 両 側 ) 、 有 意 水 準 5%)。 有 意 差
   が認められた農薬について、Heセーバー注入口のピーク
208
209
   面 積 値 の 平 均 値 は、SSL 注 入 口 を 用 い た 場 合 の 108~115%
210
   の範囲であり、若干高い面積値が得られたものの、実用
   上の問題とはならない程度と考えられた。なお、ピーク
2 \ 1 \ 1
2 1 2
   面積値の違いについては、注入口以外にも GC カラムや
   MS の状態等が影響を与える要因となることに留意が必
2 1 3
   要である。
214
     また、測定対象化合物を同定する際に、定量イオンと
215
   定性イオンのピーク面積比(定性イオン/定量イオン)を
216
   指標として用いることがある。そこで、Heセーバー注入
2 1 7
   口と SSL 注入口を使用した場合の、測定対象化合物(1
218
   ng/mL 及 び 100 ng/mL) の 定 量 イ オ ン と 定 性 イ オ ン の ピ ー
2 1 9
   ク 面 積 比 を 示 し た ( Table 4)。 He セ ー バ ー 注 入 口 を 使 用
220
```

 $2\ 2\ 1$

222

224 IV まとめ

225 検 討 し た 有 機 塩 素 系 農 薬 に つ い て 、He セ ー バ ー 注 入 口

104%の範囲であり良く一致していた。

した場合のピーク面積比の平均値は、SSL注入口の 94~

- 226 を使用した場合でも、保持時間、ピーク形状、及びピーク
- 227 面積値に実用上問題となる点は認められなかった。今回
- 228 の GC 条件では、He セーバー注入口を使用することで、
- 229 ヘリウムの使用量を SSL 注入口の約 1/7 に削減できる。
- 230 He セーバー注入口は、使用可能な GC の機器メーカーの
- 231 制約を受けるものの、GC-MS(/MS)測定時の He 消費量を
- 232 削減する一つの選択肢として有用であると考えられる。
- 233 なお、本研究では 2 濃度の標準溶液を用いた基礎的な検
- 234 討を行ったものであり、He セーバー注入口を使用した際
- 235 の検量線の直線性や試料マトリックスの影響については
- 236 未検討であることに留意が必要である。

- 238 V 謝辞
- 239 本研究は厚生労働省医薬・生活衛生局食品基準審査課
- 240 「ヘリウム供給不足に対応した食品中の残留農薬等の試
- 241 験法の事前検討事業」により実施した。

- 243 VI 文献
- 244 1) 大家 泉, ヘリウム需給の見通し, 高圧力の科
- 245 学と技術, 22, 185-190 (2012).
- 246 2) 大沼倫晃, ヘリウムガスの動向と取扱いについ
- 247 て , 環境と測定技術 46,3-8 (2019).
- 248 3)中井隆志, 平松良朗, 阿部吉雄,最新 GC-MS
- 249 におけるヘリウム供給不足へのソリューション,環

- 250 境 と 測 定 技 術 , 46, 9-20 (2019).
- $2\,5\,1\,$ 4) Hübschmann, H.J., "Handbook of GC-MS:
- 252 Fundamentals and applications" 3rd Ed., Weinheim,
- 253 Germany, Wiley-VCH Verlag GmbH & Co. KGaA, 2015.
- 254 5)厚生労働省医薬食品局食品安全部長通知"食品
- 255 に残留する農薬,飼料添加物又は動物用医薬品の成
- 256 分である物質の試験法"第2章 一斉試験法、平成
- 257 17年1月24日、食安発第0124001号
- 258

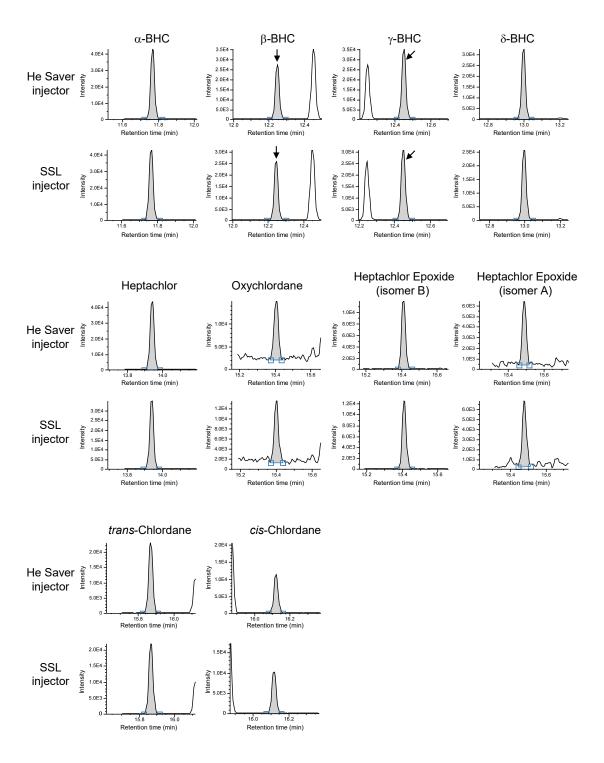
259 Table 1. SRM transitions with collision energy for

the analytes

	Quanti	fier ion	Qualifier ion			
Analyte	SRM transition (m/z)	Collision energy (eV)	SRM transition (m/z)	Collision energy (eV)		
α-ВНС	181 > 145	10	219 > 183	5		
β-ВНС	181 > 145	10	219 > 183	5		
ү-ВНС	181 > 145	10	219 > 183	5		
δ-ВНС	181 > 145	10	219 > 183	5		
Heptachlor	272 > 237	10	274 > 239	10		
Oxychlordane	149 > 121	5	185 > 121	10		
Heptachlor Epoxide (isomer B)	353 > 263	10	355 > 265	10		
Heptachlor Epoxide (isomer A)	185 > 157	10	183 > 155	10		
trans-Chlordane	373 > 266	15	375 > 266	15		
cis -Chlordane	373 > 266	15	375 > 266	15		

Concentration (ng/mL)	Analyte	He Saver injector (A)			SSL injector (B)			A-B
		Ave.(min)	S.D. (min)	RSD (%)	Ave.(min)	S.D. (min)	RSD (%)	(min)
	α-ВНС	11.77	0.00	0.00	11.76	0.01	0.05	0.01
	β-ВНС	12.25	0.00	0.00	12.24	0.01	0.04	0.01
	ү-ВНС	12.45	0.00	0.00	12.45	0.01	0.04	0.00
	δ-ВНС	13.00	0.00	0.00	12.99	0.00	0.03	0.01
1	Heptachlor	13.94	0.00	0.00	13.94	0.01	0.04	0.00
	Oxychlordane	15.40	0.01	0.04	15.40	0.00	0.00	0.00
	Heptachlor Epoxide (isomer B)	15.41	0.00	0.03	15.41	0.01	0.04	0.01
	Heptachlor Epoxide (isomer A)	15.49	0.00	0.03	15.48	0.01	0.05	0.01
	trans -Chlordane	15.87	0.00	0.00	15.86	0.00	0.03	0.01
	cis-Chlordane	16.12	0.00	0.00	16.11	0.01	0.03	0.01
100	α-ВНС	11.77	0.00	0.00	11.77	0.01	0.05	0.00
	β-ВНС	12.25	0.00	0.00	12.25	0.01	0.04	0.00
	ү-ВНС	12.45	0.01	0.04	12.45	0.00	0.04	0.01
	δ-ВНС	13.00	0.00	0.03	12.99	0.01	0.04	0.00
	Heptachlor	13.94	0.01	0.04	13.94	0.01	0.04	0.01
	Oxychlordane	15.40	0.01	0.04	15.40	0.00	0.00	0.00
	Heptachlor Epoxide (isomer B)	15.41	0.01	0.04	15.41	0.01	0.04	0.01
	Heptachlor Epoxide (isomer A)	15.49	0.01	0.04	15.48	0.01	0.04	0.00
	trans-Chlordane	15.87	0.00	0.00	15.86	0.00	0.03	0.01
	cis-Chlordane	16.12	0.00	0.03	16.11	0.00	0.03	0.01

Table 3. Comparison of peak areas of quantifier ions $268 \quad \text{at 1 ng/mL and } 100 \, \, \text{ng/mL of each analyte}$


Concentration (ng/mL)	Analyte	He Saver injector (A)			SSL injector (B)			A/B
		Ave.	S.D.	RSD (%)	Ave.	S.D.	RSD (%)	(%)
	α-ВНС	70,177	3,197	5	74,349	3,289	4	94
	β-ВНС	45,218	1,946	4	44,776	2,285	5	101
	ү-ВНС	59,962	1,722	3	56,826	3,045	5	106
	δ -BHC *	51,764	2,124	4	47,257	2,393	5	110
1	Heptachlor*	69,720	4,901	7	60,860	2,912	5	115
	Oxychlordane*	23,980	1,138	5	21,636	857	4	111
	Heptachlor Epoxide (isomer B)	18,685	1,396	7	19,162	1,519	8	98
	Heptachlor Epoxide (isomer A)	10,682	530	5	10,708	989	9	100
	trans -Chlordane	38,140	2,120	6	38,054	1,501	4	100
	cis-Chlordane	18,481	1,477	8	19,403	1,333	7	95
100	α-ВНС	7,209,336	298,365	4	7,374,891	324,213	4	98
	β-ВНС	4,742,034	219,302	5	4,658,309	223,751	5	102
	ү-ВНС	6,217,989	192,720	3	5,928,373	279,337	5	105
	δ -BHC *	5,408,926	199,470	4	5,024,193	232,838	5	108
	Heptachlor*	7,445,957	459,312	6	6,498,125	335,816	5	115
	Oxychlordane*	2,586,256	64,067	2	2,301,730	64,501	3	112
	Heptachlor Epoxide (isomer B)	1,966,348	147,424	7	1,994,165	95,623	5	99
	Heptachlor Epoxide (isomer A)	1,134,319	54,970	5	1,143,106	62,152	5	99
	trans -Chlordane	4,250,941	281,795	7	4,243,796	249,938	6	100
	cis-Chlordane	2,003,833	160,710	8	2,151,958	135,925	6	93

* The significance of the differences between the He Saver injector and SSL injector were assessed by two-sided Student's t-tests (p < 0.05).

272

Table 4. Comparison of qualifier/quantifier peak
area ratios (%) at 1 ng/mL and 100 ng/mL of each
analyte

Concentration (ng/mL)	Analyte	He Saver injector (A)			SSL injector (B)			A/B
		Ave.	S.D.	RSD (%)	Ave.	S.D.	RSD (%)	(%)
	α-ВНС	76	2	2	75	1	2	101
	β-ВНС	77	2	2	74	2	2	104
	ү-ВНС	61	3	5	63	3	4	98
	δ-ВНС	63	3	6	65	3	5	97
1	Heptachlor	63	2	3	63	3	4	99
	Oxychlordane	92	6	7	93	3	3	98
	Heptachlor Epoxide (isomer B)	64	6	9	63	6	9	102
	Heptachlor Epoxide (isomer A)	84	6	8	84	11	13	101
	trans-Chlordane	94	2	2	95	2	2	99
	cis-Chlordane	94	4	4	96	3	3	98
100	α-ВНС	77	2	2	76	1	1	100
	β-ВНС	77	1	1	76	1	1	102
	ү-ВНС	64	2	4	66	1	1	98
	δ-ВНС	65	3	5	69	1	1	94
	Heptachlor	63	1	2	63	0	1	99
	Oxychlordane	92	2	2	93	2	2	99
	Heptachlor Epoxide (isomer B)	65	1	1	65	1	2	100
	Heptachlor Epoxide (isomer A)	83	2	2	83	2	2	100
	trans-Chlordane	95	1	1	95	1	1	100
	cis-Chlordane	95	1	1	95	1	1	100

280 Fig. 1. Representative SRM chromatograms of quantifier 281 ions of the analytes $(1\ ng/mL)$