

<u>Gene Therapy Workshop</u> ICH Activities - Regional Topics

Yokohama, June 2009

Andreas Marti

Swissmedic, Switzerland

Representing

EFTA

• ICH GTDG - Role of EFTA

Retroviral Vectors

- 1) Overall Experience
- 2) SCID
- 3) GCD
- 4) Thalassemia
- Regulation of Gene Therapy in Switzerland (representing EFTA)

- European Free Trade Association (EFTA) was founded in 1960
- 4 Countries: Iceland, Liechtenstein, Norwegian, Switzerland
- <u>ICH:</u> EFTA has a role as observer together with Canada and WHO
- Swissmedic represents EFTA (according to the ICH Procedures)

ICH GTDG

- First meeting in Tokyo 2001
- Subjects under discussion:
 - RCA, reference material
 - Inadvertent germline integration
 - Oncolytic viruses
 - Viral/Vector shedding
 - Insertional mutagenesis

ICH GTDG

- First meeting in Tokyo 2001
- Subjects under discussion:
 - RCA, reference material
 - Inadvertent germline integration
 - Oncolytic viruses
 - Viral/Vector shedding
 - Insertional mutagenesis

Retroviral Vectors (RV)

Genome integration may lead to:

- Gene disruption
- Distal gene activation
- Read-through transcription

Eventually resulting in:

- Dysregulated gene expression
- Tumorigenesis

Retroviral vectors: 21% of all clinical studies

Disease	Cells affected	Defective gene and/or protein	Chromosomal location
X-linked SCID Autosomal recessive SCID	T, B(?), NK T, B, NK(?) T, B, NK(?) T(?) T	γc ADA PNP CD3ε/CD3γ ZAP 70	Xq13.1 20q12–13.11 14q11.2 11q23 2q12
MHC class II deficiency MHC class I deficiency	T, NK T, B T, B T, B T, B T, B	JAK-3 RAG1/RAG2 RFX5 RFXAP CIITA TAP2	? 11p13 ? ? ? 6p21.3

GT Workshop, Yokohama, June 09

Fischer Trial (1999)

- PIs: Fischer, Cavazzana-Calvo, et al.; Hôpital Necker-Enfants Malades, Paris
- Enrollment: 11 subjects (note: an additional subject received the same vector product in Australia), primarily infants/toddlers
- Vector: MFG
- Transgene: γ c
- Transduction efficiency: 20-40% (in most subjects 35%)

X-SCID (\gamma_c) French Trial

Clonal T-cell proliferation - insertional mutagenesis

GT Workshop, Yokohama, June 09

Comparison of Patients with Leukemias

Characteristic	P4*	P5*	P10 [#]
Age at time of treatment	1 month (m)	3m	9m
Dose γc⁺, CD34⁺ cells/kg	18 x 10 ⁶	20 x 10 ⁶	11 x 10 ⁶
Time, Type T cell proliferation	30m (2002) γδ⁺ TCR	34m (2002) αβ ⁺ TCR	33m (2005) Vβ5 TCR
Retroviral Vector Integration	In 1 st Intron, LMO–2	In 5'UTR, LMO-2	3 vector integrants Sites TBD

*Hacein-Bey-Abina, S., et al, 2003, Science 302:415 #J.-H. Trouvin, Afssaps, and A. Fischer

Thrasher Trial

- PIs: Thrasher, Gaspar and Veys; Great Ormond Street Hospital for Children, London
- Enrollment: 3 infants
- Vector: MFG (GALV pseudotyped)
- Transgene: γ c
- Transduction efficiency: greater than 50%

X-SCID (\gamma_c) - French / English Trials

- Selective advantage of corrected cells
- About 20 patients
- Demonstrated benefit
- 5 SAEs
- 1 patient died
- No overexpression of γ_c
- No constitutive activation of JAK3
- Contribution of LMO-2 and γ_c ?

ICH GTDG Discussion on X-SCID Japan

- Integration site analysis required (LAM-PCR)
- Monitoring for clonality

USA / EU

- Transient hold of retroviral SCID trials
- Sponsor must be able to monitor for clonality
- EU requires archival of samples, LAM-PCR not required (not validated)
- Integrations can be repeated in animal systems
- Restrict copy number in cells to integrated 1 copy on average

ICH GTDG Discussion on X-SCID USA

- Until data accumulate to change the risk benefit assessment in a more favorable manner, retroviral vector-mediated gene transfer should only be used in children with X-SCID under the following conditions:
 - Failed previous hematopoietic stem cell/bone marrow transplantation
 - Have no reasonable alternative therapies
 - e.g., patients precluded from transplantation because of unacceptably high risk from previous infections.

- Rare inherited immunodeficiency
- Life threatening bacterial and fungal infections
- >50% of mutations in the gp91phox gene
- HLA-matched BMT curative

Hossle et al 2002

CGD – German Trial

Grez Trial (2001)

- PIs: Grez, Ott, Seger, et al; Unversity Hospital, Frankfurt
- Enrollment: 2 subjects, age 25 (P1) and 26 (P2)
- Vector: MoMLV, SFFV-LTR
- Transgene: gp91^{phox}
- Dose: 5x10⁶ CD34⁺/kg (P1), 3.6x10⁶ CD34⁺/kg (P2)
- No selective advantage
- Busulfan 4 mg/kg
- Transduction efficiency: 45% (P1), 39.5% (P2)
- Level of correction: granulocytes up to 50-60%

CGD – German Trial

- Initial benefit after treatment
- Limited expansion in a number of clones
- Development of myelodysplasia
- Integrations sites characterized by LAM-PCR:
 - MDS-EVI1
 - PRDM16
 - SETBP1
- Silencing of TG expression
- One patient died due to underlying disease

GT Workshop, Yokohama, June 09

β-Thalassemia - French Trial

- Clinical Phase I/II trial sponsored by Genetix France
- Safety, tolerance and efficacy of a lentiviral vector encoding β -globin
- Several safety features have been introduced in this selfinactivating vector
- 19-year old patient suffering from a severe form of β-thalassemia, dependent on transfusions since the age of 3, splenectomized at the age of 6, did not have an HLA geno-identical sibling donor
- Stable haemoglobin levels above 9.5 g/dL

β-Thalassemia - French Trial

- Relative dominance of a haematopoietic clone
- Vector insertion within the HMGA2 gene
- 12% of circulating granulocytes
- 2% of circulating erythroblasts
- Truncated HMGA2 RNA highly expressed in erythroblasts
- HMGA2 overexpression associated with either benign or malignant tumours
- Dominant clone stable for the last 5 months

ICH GTDG Discussion – Retroviral / Lentiviral Vectors

- Lack of convincing pre-clinical studies in animal models that demonstrate new vector designs significantly reduce the risk of insertional mutagenesis
- Current data from French β -thalessemia suggest continued risk with newer vector designs
- Unclear how to change inclusion/exclusion
 criteria

Regional Topics EFTA CGD clinical study in Switzerland

GT Workshop, Yokohama, June 09

Regional Topics EFTA CGD clinical study in Switzerland

- Treatment of one child (10y) in the year 2005
- Had severe aspergillosis
- BMT not possible (lack of donor)
- Beneficial treatment (cure form aspergillosis)
- Clinial hold due AE in German trial
- No SAE
- Plan to treat more children with a new generation of lentiviral vector

Clinical trials in Switzerland

Legal Basis

- Swiss Law on Therapeutic Products
- Swiss Law on Transplantation
- European Pharmacopoeia

Guidelines

- Swiss Guidelines
- International Guidelines (e.g. ICH* Guidelines)

*ICH: International Conference on Harmonisation; www.ich.org

Approval of Clinical Trials (90 days)

(Gene therapy and investigational products containing GMOs)

Marketing Authorization

No gene therapy product authorized in Switzerland

Time to approval 130 – 300 days

(Swissmedic evaluation time)

