Survey of Volatile Organic Compounds found in Indoor and Outdoor Air Samples from Japan

Toshiko Tanaka-Kagawa¹, Shigehisa Uchiyama¹, Erika Matsushima¹, Akira Sasaki², Hiroshi Kobayashi³, Hiromi Kobayashi⁴, Masahiro Yagi⁵, Masahiko Tsuno⁶, Masa Arao⁶, Kazumi Ikemoto⁶, Makoto Yamasaki⁷, Ayako Nakashima⁷, Yuri Shimizu⁷, Yasufumi Otsubo⁸, Masanori Ando⁹, Hideto Jinno^{1#} and Hiroshi Tokunaga¹

 ¹ National Institute of Health Sciences, ² Research Institute for Environmental Sciences and Public Health of Iwate Prefecture, ³ Yamanashi Institute for Public Health, ⁴ Shiga Prefectural Institute of Public Health and Environmental Science, ⁵ Kobe Institute of Health, ⁶ The Public Health Institute of Kochi Prefecture, ⁷ Fukuoka City Institute for Hygiene and the Environment, ⁸ Chiba University and ⁹ Musashino University

Indoor air quality is currently a growing concern, mainly due to the incidence of sick building syndrome and building related illness. To better understand indoor air quality in Japan, both indoor and outdoor air samples were collected from 50 residences in lwate, Yamanashi, Shiga, Hyogo, Kochi and Fukuoka Prefectures. More than 100 volatile organic compounds (VOCs) were analyzed by thermal desorption-gas chromatography/ mass spectrometry method. The most abundant class of compounds present in the indoor air samples were identified (i.e. alkanes, alkylbenzenes and terpenes). For 30% of the indoor air samples, the sum of each VOC exceeded the current provisional guideline value for total VOC (TVOC, 400 μ g/m³). The major component of these samples included linear and branched-chain alkanes (possibly derived from fossil fuels), 1,4-dichlorobenzene (a moth repellent), α -pinene (emission from woody building materials) and limonene (probably derived from aroma products). As an unexpected result, one residence was polluted with an extremely high concentration of 1,1,1,2-tetrafluoroethane (720 μ g/m³), suggesting accidental leakage from a household appliance such as a refrigerator. The results presented in this paper are important in establishing the Japanese target compound list for TVOC analysis, as well as defining the current status of indoor air quality in Japan.

Key Words: indoor air quality, sick building syndrome, guideline value, volatile organic compound, thermal desorption-gas chromatography/mass spectrometry

(Received May 31, 2005)

Introduction

Indoor air quality is of growing concern, mainly because of the increased incidence of sick building syndrome and building related illness^{1,2}. To achieve and maintain healthy air quality, the Ministry of Health, Labour and Welfare of Japan (MHLW) has established guidelines for 13 organic compounds in indoor air, including formaldehyde (guideline value, 100 μ g/m³), acetaldehyde (48 μ g/m³), tetradecane (330 μ g/m³), toluene (260 μ g/m³), xylene (870 μ g/m³), ethylbenzene (3,800 μ g/m³), styrene (220 μ g/m³), 1,4-dichlorobenzene (240 μ g/m³), chlorpyrifos (1 μ g/m³), diazinon (0.29 μ g/m³), fenobucarb (33 μ g/m³), di-(2-ethylhexyl) phthalate (120 μ g/m³) and di-(*n*-butyl) phthalate (220 µg/m³) (http://www.nihs.go.jp/mhlw/chemical/situnai/ kentoukai/rep-eng4.html). There have been several pioneering reports on the indoor air concentrations for these compounds^{3 - 5}). In addition to the guidelines for each compound, the MHLW has proposed total volatile organic compounds (TVOC) of 400 μ g/m³ as an advisable value based on the concept of As Low As Reasonably Achievable from the investigations on the indoor VOC concentrations in Japan. The analytical procedure of TVOC, however, has not been fully defined. For instance, the list of target compounds, or the VOCs which should be identified and quantified in the TVOC analysis, remains to be established. Furthermore, it will be necessary to refine the air sampling method (e.g. an

[#]To whom correspondence should be addressed: Hideto Jinno; 1-18-1 Kamiyoga, Setagya-ku, Tokyo 158-8501, Japan; Tel: +81-3-3700-9298; Fax: +81-3-3700-9298; E-mail: jinno@nihs.go.jp

alternative sorbent to Tenax TA, change the air sampling volume/rate) for the quantitative analysis of TVOC.

In this study, we investigated the 132 VOCs in the 50 indoor and outdoor air samples by the thermal desorptiongas chromatography/mass spectrometry (TD-GC/MS) method. The data is critical for defining the candidate compounds to be included in the target compound list for Japan.

Materials and methods

Reagents

All the analytical standards, listed in Table 1, were obtained from Wako Pure Chemicals (Osaka, Japan).

Air sampling

The residences used in this investigation were chosen without consideration of the age of the houses. The Indoor and outdoor air samples were collected from 50 residences in Iwate, Yamanashi, Shiga, Hyogo, Kochi and Fukuoka Prefectures in January and February, 2005. Active sampling was carried out for 24 h at a flow rate of 5 ml/min, using a five-line mass flow controller (Toyo Riko, Tokyo, Japan) and a vacuum pump Linicon LV-140 (Nitto Koki, Tokyo, Japan). Typical sample volumes of 7.2 L were passed through the in-house-made 4-bed sorbent tube (3 graphitized carbon sorbents and one carbon molecular sieve). The sorbent tubes were preconditioned using a Markes TC-20 (ENV Science Trading, Chiba, for 24 h with a stream of 20 ml/min Japan) at 310 helium.

TD-GC/MS analysis of 132 VOCs

All the TD-GC/MS analysis was carried out at Green Blue Corporation (Tokyo, Japan) and a detailed method will be published elsewhere (Ando. et al., unpublished results). Briefly, analyses were performed using a QP-5050A GC/MS (Shimadzu, Kyoto, Japan) equipped with a thermal desorption unit ATD-400 (Perkin-Elmer, Yokohama, Japan). Thermal desorption was carried out by heating the tube at 300 for 20 min and applying a stream of helium of 20 ml/min. The analytes were subsequently focused at -10 on a Tenax TA trap, and for 2 min. The outlet then the trap was heated at 300 splitter of the unit was fixed at 1:19. The column used was a CP-SIL 5CB fused silica capillary, 60 m × 0.25 mm × 1.0 µm film thickness (Varian, Palo Alto, CA, USA). The oven of the chromatograph was programmed from 40 (hold 10 min) to 140 at 3 /min, to 200 at 5 /min and finally up to 300 at 10 /min. The carrier gas was high purity helium at a flow rate of 1 ml/min.

Results and discussion

Indoor and outdoor air samples were collected from 50 different residences in January - February, 2005, and their VOC constituents were analyzed by the TD-GC/MS method. Table 1 summarizes the indoor and outdoor air concentrations for 132 VOCs. When compared in terms of the median values, the most abundant VOCs were ethanol (520 μ g/m³), followed by acetone (16 μ g/m³), toluene (14 μ g/m³), limonene (13 μ g/m³), *n*-nonane (6.8 $\mu g/m^3$), *n*-decane (6.4 $\mu g/m^3$), *m*,*p*-xylene (6.1 $\mu g/m^3$), *n*-undecane (5.5 μ g/m³), *n*-dodecane (4.4 μ g/m³), 2-propanol (3.8 μ g/m³) and *n*-octane (3.7 μ g/m³). In addition to the ubiquitously detected compounds in indoor air (ethanol, n-undecane, acetone, naphthalene and benzene), VOCs that found with high frequencies ($\geq 80\%$) were *n*-alkanes (C7 to C16), branched-chain alkanes (C7 to C10), cycloalkanes (cyclohexane, methylcyclopentane and methylcyclohexane), alkylbenzenes (toluene, xylene isomers, ethylbenzene, n-propylbenzene, 2-ethyltoluene, trimethylbenzene isomers and 1,2,4,5-tetramethylbenzene), terpenes (limonene and α -pinene), halocarbons (dichloromethane, chloroform, carbon tetrachloride, 1,4-dichlorobenzene and 1,3,5-trichlorobenzene), styrene, 2-propanol, ethylacetate and methylisobutylketone. Among each VOC included in the guideline for indoor air quality in Japan, only 1,4-dichlorobenzene was found at the concentrations exceeding the guideline value (240 μ g/m³): two residences at the levels of 320 and 360 μ g/m³.

In terms of the sum of each VOC, 15 of 50 residences (30%) exceeded the provisional guideline value for TVOC (400 μ g/m³) (Fig.1). Figure 2 depicts the composition of each chemical class for these 15 indoor air samples. For residence A, linear and branched-chain alkanes accounted for 70% of the indoor VOCs. These compounds were also a major component for residences D, F, I, J, K, L and M (35-55%). The alkanes were probably derived from fossil fuels because all of these residences used unvented kerosene heaters during the air sampling procedure. The predominant VOC detected in residences B and N was 1,4-dichlorobenzene (27% and 39%, respectively). This moth repellent was also abundant in the indoor air sample from F (31%), and thus alkanes and 1,4-dichlorobenzene represented almost 75% of the combined VOCs. Terpenes were major constituents (54-84%) of the indoor air samples from residences C, E, G and O, although the

	T T	00		•	. 1	• •	1	. 1 .
Table	v	()()	concentrations	1n	the	indoor	and	outdoor air
I HOIV .		$\sim \sim$	concentrations		une	maoor	and	outdoor un

Compounds			Indoor Air Concentration (µg/m ³)					Outdoor Air Concentration $(\mu g/m^3)$					
		Mean	Median	Minimum	Max	Fre	equency	Mean	Median	Minimum	Max	Freq	luency
Aromatic	Benzene	3.2	2.7	0.71	17	50	/ 50	1.9	1.7	0.63	5.2	50	/ 50
Hydrocarbons	Toluene	16	14	<loq<sup>b</loq<sup>	50	49	/ 50	9.4	6.6	0.68	42	50	/ 50
	Ethylbenzene	5.3	3.3	<loq< th=""><th>26</th><th>49</th><th>/ 50</th><th>4.2</th><th>1.3</th><th>0.09</th><th>120</th><th>50</th><th>/ 50</th></loq<>	26	49	/ 50	4.2	1.3	0.09	120	50	/ 50
	<i>m</i> , <i>p</i> -Xylene	9.3	6.1	<loq< th=""><th>49</th><th>49</th><th>/ 50</th><th>3.9</th><th>2.1</th><th>0.25</th><th>68</th><th>50</th><th>/ 50</th></loq<>	49	49	/ 50	3.9	2.1	0.25	68	50	/ 50
	<i>o</i> -Xylene	4.1	2.4	<loq< th=""><th>24</th><th>49</th><th>/ 50</th><th>1.2</th><th>0.72</th><th><loq< th=""><th>16</th><th>48</th><th>/ 50</th></loq<></th></loq<>	24	49	/ 50	1.2	0.72	<loq< th=""><th>16</th><th>48</th><th>/ 50</th></loq<>	16	48	/ 50
	n -Propylbenzene	1.6	0.79	<loq< th=""><th>10</th><th>49</th><th>/ 50</th><th>0.47</th><th>0.44</th><th><loq< th=""><th>2.4</th><th>44</th><th>/ 50</th></loq<></th></loq<>	10	49	/ 50	0.47	0.44	<loq< th=""><th>2.4</th><th>44</th><th>/ 50</th></loq<>	2.4	44	/ 50
	Isopropylbenzene	0.53	0.22	<loq< th=""><th>3.9</th><th>37</th><th>/ 50</th><th>0.05</th><th><loq< th=""><th><loq< th=""><th>0.88</th><th>12</th><th>/ 50</th></loq<></th></loq<></th></loq<>	3.9	37	/ 50	0.05	<loq< th=""><th><loq< th=""><th>0.88</th><th>12</th><th>/ 50</th></loq<></th></loq<>	<loq< th=""><th>0.88</th><th>12</th><th>/ 50</th></loq<>	0.88	12	/ 50
	2-Ethyltoluene	2.8	0.87	<loq< th=""><th>22</th><th>49</th><th>/ 50</th><th>0.41</th><th>0.28</th><th><loq< th=""><th>3.5</th><th>43</th><th>/ 50</th></loq<></th></loq<>	22	49	/ 50	0.41	0.28	<loq< th=""><th>3.5</th><th>43</th><th>/ 50</th></loq<>	3.5	43	/ 50
	1,2,3-Trimethylbenzene	2.8	0.90	<loq< th=""><th>24</th><th>46</th><th>/ 50</th><th>0.35</th><th>0.24</th><th><loq< th=""><th>2.1</th><th>42</th><th>/ 50</th></loq<></th></loq<>	24	46	/ 50	0.35	0.24	<loq< th=""><th>2.1</th><th>42</th><th>/ 50</th></loq<>	2.1	42	/ 50
	1,2,4-Trimethylbenzene	10	3.7	<loq< th=""><th>96</th><th>49</th><th>/ 50</th><th>2.0</th><th>1.3</th><th>0.09</th><th>16</th><th>50</th><th>/ 50</th></loq<>	96	49	/ 50	2.0	1.3	0.09	16	50	/ 50
	1,3,5-Trimethylbenzene	2.7	0.99	<loq< th=""><th>21</th><th>48</th><th>/ 50</th><th>0.61</th><th>0.45</th><th><loq< th=""><th>5.1</th><th>49</th><th>/ 50</th></loq<></th></loq<>	21	48	/ 50	0.61	0.45	<loq< th=""><th>5.1</th><th>49</th><th>/ 50</th></loq<>	5.1	49	/ 50
	n-Butylbenzene	0.77	0.22	<loq< th=""><th>8.1</th><th>35</th><th>/ 50</th><th>0.03</th><th><loq< th=""><th><loq< th=""><th>0.30</th><th>7</th><th>/ 50</th></loq<></th></loq<></th></loq<>	8.1	35	/ 50	0.03	<loq< th=""><th><loq< th=""><th>0.30</th><th>7</th><th>/ 50</th></loq<></th></loq<>	<loq< th=""><th>0.30</th><th>7</th><th>/ 50</th></loq<>	0.30	7	/ 50
	1-Methyl-3-propylbenzene	1.2	<loq< th=""><th><loq< th=""><th>13</th><th>23</th><th>/ 50</th><th>0.02</th><th><loq< th=""><th><loq< th=""><th>0.49</th><th>2</th><th>/ 50</th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>13</th><th>23</th><th>/ 50</th><th>0.02</th><th><loq< th=""><th><loq< th=""><th>0.49</th><th>2</th><th>/ 50</th></loq<></th></loq<></th></loq<>	13	23	/ 50	0.02	<loq< th=""><th><loq< th=""><th>0.49</th><th>2</th><th>/ 50</th></loq<></th></loq<>	<loq< th=""><th>0.49</th><th>2</th><th>/ 50</th></loq<>	0.49	2	/ 50
	1,2,4,5-Tetramethylbenzene	0.71	0.29	<loq< td=""><td>6.8</td><td>40</td><td>/ 50</td><td>0.04</td><td><loq< td=""><td><loq< td=""><td>0.38</td><td>9</td><td>/ 50</td></loq<></td></loq<></td></loq<>	6.8	40	/ 50	0.04	<loq< td=""><td><loq< td=""><td>0.38</td><td>9</td><td>/ 50</td></loq<></td></loq<>	<loq< td=""><td>0.38</td><td>9</td><td>/ 50</td></loq<>	0.38	9	/ 50
	1,3-Diisopropylbenzene	0.01	<loq< td=""><td><loq< td=""><td>0.53</td><td>1</td><td>/ 50</td><td>-</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0</td><td>/ 50</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>0.53</td><td>1</td><td>/ 50</td><td>-</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0</td><td>/ 50</td></loq<></td></loq<></td></loq<></td></loq<>	0.53	1	/ 50	-	<loq< td=""><td><loq< td=""><td><loq< td=""><td>0</td><td>/ 50</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0</td><td>/ 50</td></loq<></td></loq<>	<loq< td=""><td>0</td><td>/ 50</td></loq<>	0	/ 50
	1,4-Diisopropylbenzene	— ^a	<loq< td=""><td><loq< td=""><td><loq< td=""><td>0</td><td>/ 50</td><td>_</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0</td><td>/ 50</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0</td><td>/ 50</td><td>_</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0</td><td>/ 50</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>0</td><td>/ 50</td><td>_</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0</td><td>/ 50</td></loq<></td></loq<></td></loq<></td></loq<>	0	/ 50	_	<loq< td=""><td><loq< td=""><td><loq< td=""><td>0</td><td>/ 50</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0</td><td>/ 50</td></loq<></td></loq<>	<loq< td=""><td>0</td><td>/ 50</td></loq<>	0	/ 50
	Styrene	2.3	0.71	<loq< td=""><td>40</td><td>49</td><td>/ 50</td><td>0.26</td><td>0.18</td><td><loq< td=""><td>1.1</td><td>38</td><td>/ 50</td></loq<></td></loq<>	40	49	/ 50	0.26	0.18	<loq< td=""><td>1.1</td><td>38</td><td>/ 50</td></loq<>	1.1	38	/ 50
	α-Methylstyrene	0.01	<loq< td=""><td><loq< td=""><td>0.42</td><td>1</td><td>/ 50</td><td>_</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0</td><td>/ 50</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>0.42</td><td>1</td><td>/ 50</td><td>_</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0</td><td>/ 50</td></loq<></td></loq<></td></loq<></td></loq<>	0.42	1	/ 50	_	<loq< td=""><td><loq< td=""><td><loq< td=""><td>0</td><td>/ 50</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0</td><td>/ 50</td></loq<></td></loq<>	<loq< td=""><td>0</td><td>/ 50</td></loq<>	0	/ 50
	<i>p</i> -Methylstyrene	0.01	<loq< td=""><td><loq< td=""><td>0.30</td><td>3</td><td>/ 50</td><td>_</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0</td><td>/ 50</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>0.30</td><td>3</td><td>/ 50</td><td>_</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0</td><td>/ 50</td></loq<></td></loq<></td></loq<></td></loq<>	0.30	3	/ 50	_	<loq< td=""><td><loq< td=""><td><loq< td=""><td>0</td><td>/ 50</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0</td><td>/ 50</td></loq<></td></loq<>	<loq< td=""><td>0</td><td>/ 50</td></loq<>	0	/ 50
	Ethynylbenzene	0.04	<loq< th=""><th><loq< th=""><th>0.75</th><th>3</th><th>/ 50</th><th>_</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0</th><th>/ 50</th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.75</th><th>3</th><th>/ 50</th><th>_</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0</th><th>/ 50</th></loq<></th></loq<></th></loq<></th></loq<>	0.75	3	/ 50	_	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0</th><th>/ 50</th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0</th><th>/ 50</th></loq<></th></loq<>	<loq< th=""><th>0</th><th>/ 50</th></loq<>	0	/ 50
	4-Phenylcyclohexene	0.01	<loq< td=""><td><loq< td=""><td>0.39</td><td>1</td><td>/ 50</td><td>_</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0</td><td>/ 50</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>0.39</td><td>1</td><td>/ 50</td><td>_</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0</td><td>/ 50</td></loq<></td></loq<></td></loq<></td></loq<>	0.39	1	/ 50	_	<loq< td=""><td><loq< td=""><td><loq< td=""><td>0</td><td>/ 50</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0</td><td>/ 50</td></loq<></td></loq<>	<loq< td=""><td>0</td><td>/ 50</td></loq<>	0	/ 50
	Naphthalene	2.6	0.48	0.15	58	50	/ 50	0.21	0.20	<loq< td=""><td>0.68</td><td>39</td><td>/ 50</td></loq<>	0.68	39	/ 50
Aliphatic	<i>n</i> -Hexane	3.0	1.9	<loq< td=""><td>14</td><td>32</td><td>/ 50</td><td>1.2</td><td><loq< td=""><td><loq< td=""><td>21</td><td>17</td><td>/ 50</td></loq<></td></loq<></td></loq<>	14	32	/ 50	1.2	<loq< td=""><td><loq< td=""><td>21</td><td>17</td><td>/ 50</td></loq<></td></loq<>	<loq< td=""><td>21</td><td>17</td><td>/ 50</td></loq<>	21	17	/ 50
Hydrocarbons	2-Methylpentane	3.0	2.2	<loq< td=""><td>25</td><td>45</td><td>/ 50</td><td>2.1</td><td>1.7</td><td><loq< td=""><td>17</td><td>41</td><td>/ 50</td></loq<></td></loq<>	25	45	/ 50	2.1	1.7	<loq< td=""><td>17</td><td>41</td><td>/ 50</td></loq<>	17	41	/ 50
	3-Methylpentane	1.9	1.5	<loq< td=""><td>18</td><td>36</td><td>/ 50</td><td>1.3</td><td>1.4</td><td><loq< td=""><td>12</td><td>27</td><td>/ 50</td></loq<></td></loq<>	18	36	/ 50	1.3	1.4	<loq< td=""><td>12</td><td>27</td><td>/ 50</td></loq<>	12	27	/ 50
	<i>n</i> -Heptane	4.7	2.8	<loq< td=""><td>20</td><td>48</td><td>/ 50</td><td>0.87</td><td>0.56</td><td><loq< td=""><td>18</td><td>40</td><td>/ 50</td></loq<></td></loq<>	20	48	/ 50	0.87	0.56	<loq< td=""><td>18</td><td>40</td><td>/ 50</td></loq<>	18	40	/ 50
	2-Methylhexane	1.5	1.3	<loq< td=""><td>4.9</td><td>48</td><td>/ 50</td><td>0.59</td><td>0.37</td><td><loq< td=""><td>5.2</td><td>37</td><td>/ 50</td></loq<></td></loq<>	4.9	48	/ 50	0.59	0.37	<loq< td=""><td>5.2</td><td>37</td><td>/ 50</td></loq<>	5.2	37	/ 50
	3-Methylhexane	1.7	1.5	<loq< td=""><td>5.7</td><td>48</td><td>/ 50</td><td>0.70</td><td>0.52</td><td><loq< td=""><td>5.8</td><td>39</td><td>/ 50</td></loq<></td></loq<>	5.7	48	/ 50	0.70	0.52	<loq< td=""><td>5.8</td><td>39</td><td>/ 50</td></loq<>	5.8	39	/ 50
	2,4-Dimethylpentane	0.18	0.16	<loq< td=""><td>0.76</td><td>40</td><td>/ 50</td><td>0.06</td><td><loq< td=""><td><loq< td=""><td>0.31</td><td>21</td><td>/ 50</td></loq<></td></loq<></td></loq<>	0.76	40	/ 50	0.06	<loq< td=""><td><loq< td=""><td>0.31</td><td>21</td><td>/ 50</td></loq<></td></loq<>	<loq< td=""><td>0.31</td><td>21</td><td>/ 50</td></loq<>	0.31	21	/ 50
	<i>n</i> -Octane	7.9	3.7	<loq< td=""><td>45</td><td>48</td><td>/ 50</td><td>0.46</td><td>0.45</td><td><loq< td=""><td>1.8</td><td>28</td><td>/ 50</td></loq<></td></loq<>	45	48	/ 50	0.46	0.45	<loq< td=""><td>1.8</td><td>28</td><td>/ 50</td></loq<>	1.8	28	/ 50
	2,2,4-Trimethylpentane	0.17	0.16	<loq< th=""><th>0.70</th><th>29</th><th>/ 50</th><th>0.18</th><th>0.15</th><th><loq< th=""><th>0.66</th><th>31</th><th>/ 50</th></loq<></th></loq<>	0.70	29	/ 50	0.18	0.15	<loq< th=""><th>0.66</th><th>31</th><th>/ 50</th></loq<>	0.66	31	/ 50
	<i>n</i> -Nonane	20	6.8	<loq< th=""><th>160</th><th>49</th><th>/ 50</th><th>1.2</th><th>0.79</th><th><loq< th=""><th>7.6</th><th>44</th><th>/ 50</th></loq<></th></loq<>	160	49	/ 50	1.2	0.79	<loq< th=""><th>7.6</th><th>44</th><th>/ 50</th></loq<>	7.6	44	/ 50
	2-Methyloctane	3.2	1.4	<loq< td=""><td>25</td><td>34</td><td>/ 50</td><td>0.13</td><td><loq< td=""><td><loq< td=""><td>1.6</td><td>8</td><td>/ 50</td></loq<></td></loq<></td></loq<>	25	34	/ 50	0.13	<loq< td=""><td><loq< td=""><td>1.6</td><td>8</td><td>/ 50</td></loq<></td></loq<>	<loq< td=""><td>1.6</td><td>8</td><td>/ 50</td></loq<>	1.6	8	/ 50
	3-Methyloctane	3.5	1.4	<loq< td=""><td>25</td><td>46</td><td>/ 50</td><td>0.18</td><td>0.04</td><td><loq< td=""><td>1.1</td><td>25</td><td>/ 50</td></loq<></td></loq<>	25	46	/ 50	0.18	0.04	<loq< td=""><td>1.1</td><td>25</td><td>/ 50</td></loq<>	1.1	25	/ 50
	<i>n</i> -Decane	23	6.3	<loq< td=""><td>250</td><td>49</td><td>/ 50</td><td>1.2</td><td>0.72</td><td><loq< td=""><td>7.9</td><td>43</td><td>/ 50</td></loq<></td></loq<>	250	49	/ 50	1.2	0.72	<loq< td=""><td>7.9</td><td>43</td><td>/ 50</td></loq<>	7.9	43	/ 50
	2-Methylnonane	4.1	1.1	<loq< td=""><td>32</td><td>47</td><td>/ 50</td><td>0.22</td><td><loq< td=""><td><loq< td=""><td>1.5</td><td>22</td><td>/ 50</td></loq<></td></loq<></td></loq<>	32	47	/ 50	0.22	<loq< td=""><td><loq< td=""><td>1.5</td><td>22</td><td>/ 50</td></loq<></td></loq<>	<loq< td=""><td>1.5</td><td>22</td><td>/ 50</td></loq<>	1.5	22	/ 50
	3,5-Dimethyloctane	1.3	0.37	<loq< td=""><td>9.9</td><td>32</td><td>/ 50</td><td>0.02</td><td><loq< td=""><td><loq< td=""><td>0.69</td><td>4</td><td>/ 50</td></loq<></td></loq<></td></loq<>	9.9	32	/ 50	0.02	<loq< td=""><td><loq< td=""><td>0.69</td><td>4</td><td>/ 50</td></loq<></td></loq<>	<loq< td=""><td>0.69</td><td>4</td><td>/ 50</td></loq<>	0.69	4	/ 50
	<i>n</i> -Undecane	20	5.5	0.41	290	50	/ 50	0.85	0.54	<loq< td=""><td>7.0</td><td>40</td><td>/ 50</td></loq<>	7.0	40	/ 50
	n-Dodecane	13	4.3	<loq< td=""><td>210</td><td>48</td><td>/ 50</td><td>0.51</td><td><loq< td=""><td><loq< td=""><td>5.6</td><td>19</td><td>/ 50</td></loq<></td></loq<></td></loq<>	210	48	/ 50	0.51	<loq< td=""><td><loq< td=""><td>5.6</td><td>19</td><td>/ 50</td></loq<></td></loq<>	<loq< td=""><td>5.6</td><td>19</td><td>/ 50</td></loq<>	5.6	19	/ 50
	<i>n</i> -Tridecane	10	3.0	<loq< td=""><td>150</td><td>48</td><td>/ 50</td><td>0.53</td><td><loq< td=""><td><loq< td=""><td>7.0</td><td>21</td><td>/ 50</td></loq<></td></loq<></td></loq<>	150	48	/ 50	0.53	<loq< td=""><td><loq< td=""><td>7.0</td><td>21</td><td>/ 50</td></loq<></td></loq<>	<loq< td=""><td>7.0</td><td>21</td><td>/ 50</td></loq<>	7.0	21	/ 50
	<i>n</i> -Tetradecane	5.5	2.5	<loq< td=""><td>62</td><td>47</td><td>/ 50</td><td>0.23</td><td><loq< td=""><td><loq< td=""><td>2.1</td><td>14</td><td>/ 50</td></loq<></td></loq<></td></loq<>	62	47	/ 50	0.23	<loq< td=""><td><loq< td=""><td>2.1</td><td>14</td><td>/ 50</td></loq<></td></loq<>	<loq< td=""><td>2.1</td><td>14</td><td>/ 50</td></loq<>	2.1	14	/ 50
	<i>n</i> -Pentadecane	2.3	1.2	<loq< td=""><td>15</td><td>47</td><td>/ 50</td><td>0.06</td><td><loq< td=""><td><loq< td=""><td>1.2</td><td>5</td><td>/ 50</td></loq<></td></loq<></td></loq<>	15	47	/ 50	0.06	<loq< td=""><td><loq< td=""><td>1.2</td><td>5</td><td>/ 50</td></loq<></td></loq<>	<loq< td=""><td>1.2</td><td>5</td><td>/ 50</td></loq<>	1.2	5	/ 50
	n-Hexadecane	1.2	1.1	<loq< td=""><td>6.5</td><td>41</td><td>/ 50</td><td>—</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0</td><td>/ 50</td></loq<></td></loq<></td></loq<></td></loq<>	6.5	41	/ 50	—	<loq< td=""><td><loq< td=""><td><loq< td=""><td>0</td><td>/ 50</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0</td><td>/ 50</td></loq<></td></loq<>	<loq< td=""><td>0</td><td>/ 50</td></loq<>	0	/ 50
	1-Octene	0.03	<loq< td=""><td><loq< td=""><td>0.88</td><td>2</td><td>/ 50</td><td>—</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0</td><td>/ 50</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>0.88</td><td>2</td><td>/ 50</td><td>—</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0</td><td>/ 50</td></loq<></td></loq<></td></loq<></td></loq<>	0.88	2	/ 50	—	<loq< td=""><td><loq< td=""><td><loq< td=""><td>0</td><td>/ 50</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0</td><td>/ 50</td></loq<></td></loq<>	<loq< td=""><td>0</td><td>/ 50</td></loq<>	0	/ 50
	1-Decene	0.81	<loq< th=""><th><loq< th=""><th>8.3</th><th>16</th><th>/ 50</th><th>0.01</th><th><loq< th=""><th><loq< th=""><th>0.45</th><th>1</th><th>/ 50</th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>8.3</th><th>16</th><th>/ 50</th><th>0.01</th><th><loq< th=""><th><loq< th=""><th>0.45</th><th>1</th><th>/ 50</th></loq<></th></loq<></th></loq<>	8.3	16	/ 50	0.01	<loq< th=""><th><loq< th=""><th>0.45</th><th>1</th><th>/ 50</th></loq<></th></loq<>	<loq< th=""><th>0.45</th><th>1</th><th>/ 50</th></loq<>	0.45	1	/ 50
Cycloalkanes	Cyclohexane	3.9	1.5	<loq< th=""><th>39</th><th>47</th><th>/ 50</th><th>0.27</th><th>0.17</th><th><loq< th=""><th>1.8</th><th>30</th><th>/ 50</th></loq<></th></loq<>	39	47	/ 50	0.27	0.17	<loq< th=""><th>1.8</th><th>30</th><th>/ 50</th></loq<>	1.8	30	/ 50
	Methylcyclopentane	1.3	1.1	<loq< td=""><td>8.0</td><td>46</td><td>/ 50</td><td>0.54</td><td>0.47</td><td><loq< td=""><td>4.6</td><td>40</td><td>/ 50</td></loq<></td></loq<>	8.0	46	/ 50	0.54	0.47	<loq< td=""><td>4.6</td><td>40</td><td>/ 50</td></loq<>	4.6	40	/ 50
	Methylcyclohexane	3.8	2.2	<loq< td=""><td>23</td><td>48</td><td>/ 50</td><td>0.71</td><td>0.39</td><td><loq< td=""><td>16</td><td>41</td><td>/ 50</td></loq<></td></loq<>	23	48	/ 50	0.71	0.39	<loq< td=""><td>16</td><td>41</td><td>/ 50</td></loq<>	16	41	/ 50
	1,4-Dimethylcyclohexane	4.7	2.2	<loq< td=""><td>37</td><td>31</td><td>/ 50</td><td>0.02</td><td><loq< td=""><td><loq< td=""><td>1.0</td><td>1</td><td>/ 50</td></loq<></td></loq<></td></loq<>	37	31	/ 50	0.02	<loq< td=""><td><loq< td=""><td>1.0</td><td>1</td><td>/ 50</td></loq<></td></loq<>	<loq< td=""><td>1.0</td><td>1</td><td>/ 50</td></loq<>	1.0	1	/ 50
	cis -1-Methyl-4-isopropyl-cyclohexane	0.31	<loq< td=""><td><loq< td=""><td>8.1</td><td>6</td><td>/ 50</td><td>-</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0</td><td>/ 50</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>8.1</td><td>6</td><td>/ 50</td><td>-</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0</td><td>/ 50</td></loq<></td></loq<></td></loq<></td></loq<>	8.1	6	/ 50	-	<loq< td=""><td><loq< td=""><td><loq< td=""><td>0</td><td>/ 50</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0</td><td>/ 50</td></loq<></td></loq<>	<loq< td=""><td>0</td><td>/ 50</td></loq<>	0	/ 50
	trans -1-Methyl-4-isopropyl-cyclohexane	—	<loq< td=""><td><loq< td=""><td><loq< td=""><td>0</td><td>/ 50</td><td>_</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0</td><td>/ 50</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0</td><td>/ 50</td><td>_</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0</td><td>/ 50</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>0</td><td>/ 50</td><td>_</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0</td><td>/ 50</td></loq<></td></loq<></td></loq<></td></loq<>	0	/ 50	_	<loq< td=""><td><loq< td=""><td><loq< td=""><td>0</td><td>/ 50</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0</td><td>/ 50</td></loq<></td></loq<>	<loq< td=""><td>0</td><td>/ 50</td></loq<>	0	/ 50
Terpenes	(+/-)-Camphene	4.9	<loq< td=""><td><loq< td=""><td>120</td><td>22</td><td>/ 50</td><td>-</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0</td><td>/ 50</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>120</td><td>22</td><td>/ 50</td><td>-</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0</td><td>/ 50</td></loq<></td></loq<></td></loq<></td></loq<>	120	22	/ 50	-	<loq< td=""><td><loq< td=""><td><loq< td=""><td>0</td><td>/ 50</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0</td><td>/ 50</td></loq<></td></loq<>	<loq< td=""><td>0</td><td>/ 50</td></loq<>	0	/ 50
	Camphor	0.90	<loq< td=""><td><loq< td=""><td>9.3</td><td>22</td><td>/ 50</td><td>—</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0</td><td>/ 50</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>9.3</td><td>22</td><td>/ 50</td><td>—</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0</td><td>/ 50</td></loq<></td></loq<></td></loq<></td></loq<>	9.3	22	/ 50	—	<loq< td=""><td><loq< td=""><td><loq< td=""><td>0</td><td>/ 50</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0</td><td>/ 50</td></loq<></td></loq<>	<loq< td=""><td>0</td><td>/ 50</td></loq<>	0	/ 50
	3-Carene	4.2	<loq< td=""><td><loq< td=""><td>75</td><td>21</td><td>/ 50</td><td>—</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0</td><td>/ 50</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>75</td><td>21</td><td>/ 50</td><td>—</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0</td><td>/ 50</td></loq<></td></loq<></td></loq<></td></loq<>	75	21	/ 50	—	<loq< td=""><td><loq< td=""><td><loq< td=""><td>0</td><td>/ 50</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0</td><td>/ 50</td></loq<></td></loq<>	<loq< td=""><td>0</td><td>/ 50</td></loq<>	0	/ 50
	α-Cedrene	0.02	<loq< td=""><td><loq< td=""><td>1.1</td><td>1</td><td>/ 50</td><td>_</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0</td><td>/ 50</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>1.1</td><td>1</td><td>/ 50</td><td>_</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0</td><td>/ 50</td></loq<></td></loq<></td></loq<></td></loq<>	1.1	1	/ 50	_	<loq< td=""><td><loq< td=""><td><loq< td=""><td>0</td><td>/ 50</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0</td><td>/ 50</td></loq<></td></loq<>	<loq< td=""><td>0</td><td>/ 50</td></loq<>	0	/ 50
	Limonene	30	13	<loq< td=""><td>250</td><td>49</td><td>/ 50</td><td>0.09</td><td><loq< td=""><td><loq< td=""><td>0.78</td><td>11</td><td>/ 50</td></loq<></td></loq<></td></loq<>	250	49	/ 50	0.09	<loq< td=""><td><loq< td=""><td>0.78</td><td>11</td><td>/ 50</td></loq<></td></loq<>	<loq< td=""><td>0.78</td><td>11</td><td>/ 50</td></loq<>	0.78	11	/ 50
	Longifolene	0.22	<loq< td=""><td><loq< td=""><td>4.7</td><td>5</td><td>/ 50</td><td>—</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0</td><td>/ 50</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>4.7</td><td>5</td><td>/ 50</td><td>—</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0</td><td>/ 50</td></loq<></td></loq<></td></loq<></td></loq<>	4.7	5	/ 50	—	<loq< td=""><td><loq< td=""><td><loq< td=""><td>0</td><td>/ 50</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0</td><td>/ 50</td></loq<></td></loq<>	<loq< td=""><td>0</td><td>/ 50</td></loq<>	0	/ 50
	Menthol	0.25	<loq< td=""><td><loq< td=""><td>13</td><td>1</td><td>/ 50</td><td>—</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0</td><td>/ 50</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>13</td><td>1</td><td>/ 50</td><td>—</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0</td><td>/ 50</td></loq<></td></loq<></td></loq<></td></loq<>	13	1	/ 50	—	<loq< td=""><td><loq< td=""><td><loq< td=""><td>0</td><td>/ 50</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0</td><td>/ 50</td></loq<></td></loq<>	<loq< td=""><td>0</td><td>/ 50</td></loq<>	0	/ 50
	α-Pinene	47	2.5	<loq< td=""><td>650</td><td>49</td><td>/ 50</td><td>0.30</td><td>0.17</td><td><loq< td=""><td>1.5</td><td>27</td><td>/ 50</td></loq<></td></loq<>	650	49	/ 50	0.30	0.17	<loq< td=""><td>1.5</td><td>27</td><td>/ 50</td></loq<>	1.5	27	/ 50
	β-Pinene	1.9	<loq< td=""><td><loq< td=""><td>27</td><td>19</td><td>/ 50</td><td><u> </u></td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0</td><td>/ 50</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>27</td><td>19</td><td>/ 50</td><td><u> </u></td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0</td><td>/ 50</td></loq<></td></loq<></td></loq<></td></loq<>	27	19	/ 50	<u> </u>	<loq< td=""><td><loq< td=""><td><loq< td=""><td>0</td><td>/ 50</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0</td><td>/ 50</td></loq<></td></loq<>	<loq< td=""><td>0</td><td>/ 50</td></loq<>	0	/ 50
Alcohols	Ethanol	920	520	99	8600	50	/ 50	16	11	<loq< th=""><th>120</th><th>38</th><th>/ 50</th></loq<>	120	38	/ 50
	1-Propanol	0.22	<loq< td=""><td><loq< td=""><td>8.7</td><td>3</td><td>/ 50</td><td>—</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0</td><td>/ 50</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>8.7</td><td>3</td><td>/ 50</td><td>—</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0</td><td>/ 50</td></loq<></td></loq<></td></loq<></td></loq<>	8.7	3	/ 50	—	<loq< td=""><td><loq< td=""><td><loq< td=""><td>0</td><td>/ 50</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0</td><td>/ 50</td></loq<></td></loq<>	<loq< td=""><td>0</td><td>/ 50</td></loq<>	0	/ 50
	2-Propanol	8.9	3.8	<loq< td=""><td>64</td><td>46</td><td>/ 50</td><td>1.5</td><td><loq< td=""><td><loq< td=""><td>34</td><td>17</td><td>/ 50</td></loq<></td></loq<></td></loq<>	64	46	/ 50	1.5	<loq< td=""><td><loq< td=""><td>34</td><td>17</td><td>/ 50</td></loq<></td></loq<>	<loq< td=""><td>34</td><td>17</td><td>/ 50</td></loq<>	34	17	/ 50
	2-Methyl-1-propanol	0.28	<loq< td=""><td><loq< td=""><td>12</td><td>4</td><td>/ 50</td><td>0.05</td><td><loq< td=""><td><loq< td=""><td>1.5</td><td>2</td><td>/ 50</td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>12</td><td>4</td><td>/ 50</td><td>0.05</td><td><loq< td=""><td><loq< td=""><td>1.5</td><td>2</td><td>/ 50</td></loq<></td></loq<></td></loq<>	12	4	/ 50	0.05	<loq< td=""><td><loq< td=""><td>1.5</td><td>2</td><td>/ 50</td></loq<></td></loq<>	<loq< td=""><td>1.5</td><td>2</td><td>/ 50</td></loq<>	1.5	2	/ 50
	2-Methyl-2-propanol	0.13	<loq< td=""><td><loq< td=""><td>1.7</td><td>9</td><td>/ 50</td><td>0.12</td><td><loq< td=""><td><loq< td=""><td>6.2</td><td>1</td><td>/ 50</td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>1.7</td><td>9</td><td>/ 50</td><td>0.12</td><td><loq< td=""><td><loq< td=""><td>6.2</td><td>1</td><td>/ 50</td></loq<></td></loq<></td></loq<>	1.7	9	/ 50	0.12	<loq< td=""><td><loq< td=""><td>6.2</td><td>1</td><td>/ 50</td></loq<></td></loq<>	<loq< td=""><td>6.2</td><td>1</td><td>/ 50</td></loq<>	6.2	1	/ 50
	1-Butanol	0.73	0.48	<loq< td=""><td>7.6</td><td>28</td><td>/ 50</td><td>0.44</td><td><loq< td=""><td><loq< td=""><td>22</td><td>2</td><td>/ 50</td></loq<></td></loq<></td></loq<>	7.6	28	/ 50	0.44	<loq< td=""><td><loq< td=""><td>22</td><td>2</td><td>/ 50</td></loq<></td></loq<>	<loq< td=""><td>22</td><td>2</td><td>/ 50</td></loq<>	22	2	/ 50

^a Could not be calculated because all samples were below the limit of quantitation.

^b Below the limit of quantitation.

Compounds			Indoor Air Concentration (µg/m ³)					Outdoor Air Concentration (µg/m ³)					
	Compounds	Mean	Median	Minimum	Max	Frequency	Mean	Median	Minimum	Max	Frequency		
Alcohols	1-Pentanol	— ^a	<loq<sup>b</loq<sup>	<loq< th=""><th><loq< th=""><th>0 / 50</th><th>-</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0 / 50</th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0 / 50</th><th>-</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0 / 50</th></loq<></th></loq<></th></loq<></th></loq<>	0 / 50	-	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0 / 50</th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0 / 50</th></loq<></th></loq<>	<loq< th=""><th>0 / 50</th></loq<>	0 / 50		
	1-Hexanol	-	<loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td><td>—</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0 / 50</td><td>—</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>0 / 50</td><td>—</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<></td></loq<>	0 / 50	—	<loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<>	<loq< td=""><td>0 / 50</td></loq<>	0 / 50		
	Cyclohexanol	—	<loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td><td>—</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0 / 50</td><td>—</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>0 / 50</td><td>—</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<></td></loq<>	0 / 50	—	<loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<>	<loq< td=""><td>0 / 50</td></loq<>	0 / 50		
	1-Octanol	8.5	<loq< td=""><td><loq< td=""><td>240</td><td>3 / 50</td><td>—</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>240</td><td>3 / 50</td><td>—</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<></td></loq<>	240	3 / 50	—	<loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<>	<loq< td=""><td>0 / 50</td></loq<>	0 / 50		
	2-Ethyl-1-hexanol	6.3	<loq< td=""><td><loq< td=""><td>110</td><td>10 / 50</td><td>—</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>110</td><td>10 / 50</td><td>—</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<></td></loq<>	110	10 / 50	—	<loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<>	<loq< td=""><td>0 / 50</td></loq<>	0 / 50		
	Texanol	0.34	<loq< td=""><td><loq< td=""><td>17</td><td>1 / 50</td><td>—</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>17</td><td>1 / 50</td><td>—</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<></td></loq<>	17	1 / 50	—	<loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<>	<loq< td=""><td>0 / 50</td></loq<>	0 / 50		
Glycols/	Propylene glycol	—	<loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td><td>—</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0 / 50</td><td>—</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>0 / 50</td><td>—</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<></td></loq<>	0 / 50	—	<loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<>	<loq< td=""><td>0 / 50</td></loq<>	0 / 50		
Glycolethers	Dimethoxymethane	0.09	<loq< td=""><td><loq< td=""><td>4.5</td><td>1 / 50</td><td>-</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>4.5</td><td>1 / 50</td><td>-</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<></td></loq<>	4.5	1 / 50	-	<loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<>	<loq< td=""><td>0 / 50</td></loq<>	0 / 50		
	Dimethoxyethane	-	<loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td><td>0.12</td><td><loq< td=""><td><loq< td=""><td>4.0</td><td>2 / 50</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0 / 50</td><td>0.12</td><td><loq< td=""><td><loq< td=""><td>4.0</td><td>2 / 50</td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>0 / 50</td><td>0.12</td><td><loq< td=""><td><loq< td=""><td>4.0</td><td>2 / 50</td></loq<></td></loq<></td></loq<>	0 / 50	0.12	<loq< td=""><td><loq< td=""><td>4.0</td><td>2 / 50</td></loq<></td></loq<>	<loq< td=""><td>4.0</td><td>2 / 50</td></loq<>	4.0	2 / 50		
	2-Methoxyethanol	0.33	<loq< td=""><td><loq< td=""><td>16</td><td>1 / 50</td><td>0.60</td><td><loq< td=""><td><loq< td=""><td>13</td><td>3 / 50</td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>16</td><td>1 / 50</td><td>0.60</td><td><loq< td=""><td><loq< td=""><td>13</td><td>3 / 50</td></loq<></td></loq<></td></loq<>	16	1 / 50	0.60	<loq< td=""><td><loq< td=""><td>13</td><td>3 / 50</td></loq<></td></loq<>	<loq< td=""><td>13</td><td>3 / 50</td></loq<>	13	3 / 50		
	2-Ethoxyethanol	—	<loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td><td>—</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0 / 50</td><td>—</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>0 / 50</td><td>—</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<></td></loq<>	0 / 50	—	<loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<>	<loq< td=""><td>0 / 50</td></loq<>	0 / 50		
	2-Butoxyethanol	0.49	<loq< td=""><td><loq< td=""><td>24</td><td>1 / 50</td><td>0.41</td><td><loq< td=""><td><loq< td=""><td>21</td><td>1 / 50</td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>24</td><td>1 / 50</td><td>0.41</td><td><loq< td=""><td><loq< td=""><td>21</td><td>1 / 50</td></loq<></td></loq<></td></loq<>	24	1 / 50	0.41	<loq< td=""><td><loq< td=""><td>21</td><td>1 / 50</td></loq<></td></loq<>	<loq< td=""><td>21</td><td>1 / 50</td></loq<>	21	1 / 50		
	1-Methoxy-2-propanol	2.9	0.48	<loq< td=""><td>47</td><td>34 / 50</td><td>0.07</td><td><loq< td=""><td><loq< td=""><td>1.3</td><td>4 / 50</td></loq<></td></loq<></td></loq<>	47	34 / 50	0.07	<loq< td=""><td><loq< td=""><td>1.3</td><td>4 / 50</td></loq<></td></loq<>	<loq< td=""><td>1.3</td><td>4 / 50</td></loq<>	1.3	4 / 50		
	2-(2-Ethoxyethoxy)ethanol	1.3	<loq< td=""><td><loq< td=""><td>22</td><td>3 / 50</td><td>—</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>22</td><td>3 / 50</td><td>—</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<></td></loq<>	22	3 / 50	—	<loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<>	<loq< td=""><td>0 / 50</td></loq<>	0 / 50		
	2-Butoxyethoxyethanol	-	<loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td><td>-</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0 / 50</td><td>-</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>0 / 50</td><td>-</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<></td></loq<>	0 / 50	-	<loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<>	<loq< td=""><td>0 / 50</td></loq<>	0 / 50		
Ketones	Acetone	22	16	2.6	98	50 / 50	6.6	4.9	0.90	19	50 / 50		
	3-Methyl-2-butanone	0.03	<loq< td=""><td><loq< td=""><td>0.37</td><td>6 / 50</td><td>—</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>0.37</td><td>6 / 50</td><td>—</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<></td></loq<>	0.37	6 / 50	—	<loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<>	<loq< td=""><td>0 / 50</td></loq<>	0 / 50		
	Methylethylketone	2.0	0.71	<loq< td=""><td>23</td><td>38 / 50</td><td>1.1</td><td>0.21</td><td><loq< td=""><td>12</td><td>27 / 50</td></loq<></td></loq<>	23	38 / 50	1.1	0.21	<loq< td=""><td>12</td><td>27 / 50</td></loq<>	12	27 / 50		
	Methylisobutylketone	2.9	0.66	<loq< td=""><td>59</td><td>43 / 50</td><td>0.84</td><td>0.38</td><td><loq< td=""><td>18</td><td>39 / 50</td></loq<></td></loq<>	59	43 / 50	0.84	0.38	<loq< td=""><td>18</td><td>39 / 50</td></loq<>	18	39 / 50		
	Acetophenone	0.23	<loq< td=""><td><loq< td=""><td>3.6</td><td>8 / 50</td><td>_</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>3.6</td><td>8 / 50</td><td>_</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<></td></loq<>	3.6	8 / 50	_	<loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<>	<loq< td=""><td>0 / 50</td></loq<>	0 / 50		
Halocarbons	Chloromethane	0.15	<loq< td=""><td><loq< td=""><td>1.4</td><td>18 / 50</td><td>0.05</td><td><loq< td=""><td><loq< td=""><td>1.1</td><td>5 / 50</td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>1.4</td><td>18 / 50</td><td>0.05</td><td><loq< td=""><td><loq< td=""><td>1.1</td><td>5 / 50</td></loq<></td></loq<></td></loq<>	1.4	18 / 50	0.05	<loq< td=""><td><loq< td=""><td>1.1</td><td>5 / 50</td></loq<></td></loq<>	<loq< td=""><td>1.1</td><td>5 / 50</td></loq<>	1.1	5 / 50		
	Bromomethane	—	<loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td><td>—</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0 / 50</td><td>—</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>0 / 50</td><td>—</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<></td></loq<>	0 / 50	—	<loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<>	<loq< td=""><td>0 / 50</td></loq<>	0 / 50		
	Dichloromethane	3.9	1.2	<loq< td=""><td>72</td><td>48 / 50</td><td>1.2</td><td>0.47</td><td><loq< td=""><td>6.3</td><td>41 / 50</td></loq<></td></loq<>	72	48 / 50	1.2	0.47	<loq< td=""><td>6.3</td><td>41 / 50</td></loq<>	6.3	41 / 50		
	Chloroform	0.59	0.33	<loq< td=""><td>4.9</td><td>47 / 50</td><td>0.19</td><td><loq< td=""><td><loq< td=""><td>3.4</td><td>10 / 50</td></loq<></td></loq<></td></loq<>	4.9	47 / 50	0.19	<loq< td=""><td><loq< td=""><td>3.4</td><td>10 / 50</td></loq<></td></loq<>	<loq< td=""><td>3.4</td><td>10 / 50</td></loq<>	3.4	10 / 50		
	Chlorodibromomethane	0.05	<loq< td=""><td><loq< td=""><td>0.84</td><td>6 / 50</td><td>—</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>0.84</td><td>6 / 50</td><td>—</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<></td></loq<>	0.84	6 / 50	—	<loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<>	<loq< td=""><td>0 / 50</td></loq<>	0 / 50		
	Carbon tetrachloride	0.68	0.61	<loq< td=""><td>1.9</td><td>48 / 50</td><td>0.75</td><td>0.73</td><td><loq< td=""><td>2.0</td><td>43 / 50</td></loq<></td></loq<>	1.9	48 / 50	0.75	0.73	<loq< td=""><td>2.0</td><td>43 / 50</td></loq<>	2.0	43 / 50		
	1,2-Dichloroethane	0.01	<loq< td=""><td><loq< td=""><td>0.20</td><td>6 / 50</td><td>—</td><td><loq< td=""><td><loq< td=""><td>0.17</td><td>1 / 50</td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>0.20</td><td>6 / 50</td><td>—</td><td><loq< td=""><td><loq< td=""><td>0.17</td><td>1 / 50</td></loq<></td></loq<></td></loq<>	0.20	6 / 50	—	<loq< td=""><td><loq< td=""><td>0.17</td><td>1 / 50</td></loq<></td></loq<>	<loq< td=""><td>0.17</td><td>1 / 50</td></loq<>	0.17	1 / 50		
	1,1,1-Trichloroethane	0.21	<loq< td=""><td><loq< td=""><td>4.8</td><td>19 / 50</td><td>0.02</td><td><loq< td=""><td><loq< td=""><td>0.30</td><td>6 / 50</td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>4.8</td><td>19 / 50</td><td>0.02</td><td><loq< td=""><td><loq< td=""><td>0.30</td><td>6 / 50</td></loq<></td></loq<></td></loq<>	4.8	19 / 50	0.02	<loq< td=""><td><loq< td=""><td>0.30</td><td>6 / 50</td></loq<></td></loq<>	<loq< td=""><td>0.30</td><td>6 / 50</td></loq<>	0.30	6 / 50		
	1,1,2,2-Tetrachloroethane	0.01	<loq< td=""><td><loq< td=""><td>0.39</td><td>1 / 50</td><td>0.03</td><td><loq< td=""><td><loq< td=""><td>0.97</td><td>2 / 50</td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>0.39</td><td>1 / 50</td><td>0.03</td><td><loq< td=""><td><loq< td=""><td>0.97</td><td>2 / 50</td></loq<></td></loq<></td></loq<>	0.39	1 / 50	0.03	<loq< td=""><td><loq< td=""><td>0.97</td><td>2 / 50</td></loq<></td></loq<>	<loq< td=""><td>0.97</td><td>2 / 50</td></loq<>	0.97	2 / 50		
	Trichloroethene	0.44	0.11	<loq< td=""><td>2.6</td><td>29 / 50</td><td>0.44</td><td><loq< td=""><td><loq< td=""><td>2.9</td><td>23 / 50</td></loq<></td></loq<></td></loq<>	2.6	29 / 50	0.44	<loq< td=""><td><loq< td=""><td>2.9</td><td>23 / 50</td></loq<></td></loq<>	<loq< td=""><td>2.9</td><td>23 / 50</td></loq<>	2.9	23 / 50		
	Tetrachloroethene	0.28	0.11	<loq< td=""><td>4.3</td><td>27 / 50</td><td>0.13</td><td><loq< td=""><td><loq< td=""><td>1.3</td><td>10 / 50</td></loq<></td></loq<></td></loq<>	4.3	27 / 50	0.13	<loq< td=""><td><loq< td=""><td>1.3</td><td>10 / 50</td></loq<></td></loq<>	<loq< td=""><td>1.3</td><td>10 / 50</td></loq<>	1.3	10 / 50		
	1,2-Dichloropropane	0.01	<loq< td=""><td><loq< td=""><td>0.15</td><td>3 / 50</td><td></td><td><loq< td=""><td><loq< td=""><td>0.12</td><td>2 / 50</td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>0.15</td><td>3 / 50</td><td></td><td><loq< td=""><td><loq< td=""><td>0.12</td><td>2 / 50</td></loq<></td></loq<></td></loq<>	0.15	3 / 50		<loq< td=""><td><loq< td=""><td>0.12</td><td>2 / 50</td></loq<></td></loq<>	<loq< td=""><td>0.12</td><td>2 / 50</td></loq<>	0.12	2 / 50		
	Chlorobenzene	0.01	<loq< td=""><td><loq< td=""><td>0.37</td><td>2 / 50</td><td>0.01</td><td><loq< td=""><td><loq< td=""><td>0.37</td><td>1 / 50</td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>0.37</td><td>2 / 50</td><td>0.01</td><td><loq< td=""><td><loq< td=""><td>0.37</td><td>1 / 50</td></loq<></td></loq<></td></loq<>	0.37	2 / 50	0.01	<loq< td=""><td><loq< td=""><td>0.37</td><td>1 / 50</td></loq<></td></loq<>	<loq< td=""><td>0.37</td><td>1 / 50</td></loq<>	0.37	1 / 50		
	1,4-Dichlorobenzene	25	2.0	<loq< td=""><td>360</td><td>49 / 50</td><td>0.47</td><td>0.33</td><td><loq< td=""><td>2.4</td><td>42 / 50</td></loq<></td></loq<>	360	49 / 50	0.47	0.33	<loq< td=""><td>2.4</td><td>42 / 50</td></loq<>	2.4	42 / 50		
	1,2,4-Trichlorobenzene	0.01	<loq< td=""><td><loq< td=""><td>0.57</td><td>1 / 50</td><td></td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>0.57</td><td>1 / 50</td><td></td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<></td></loq<>	0.57	1 / 50		<loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<>	<loq< td=""><td>0 / 50</td></loq<>	0 / 50		
	1,3,5-Trichlorobenzene	2.7	0.99	<loq< td=""><td>21</td><td>48 / 50</td><td>0.61</td><td>0.45</td><td><loq< td=""><td>5.1</td><td>49 / 50</td></loq<></td></loq<>	21	48 / 50	0.61	0.45	<loq< td=""><td>5.1</td><td>49 / 50</td></loq<>	5.1	49 / 50		
	Vinylchloride	-	<loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td><td>-</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0 / 50</td><td>-</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>0 / 50</td><td>-</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<></td></loq<>	0 / 50	-	<loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<>	<loq< td=""><td>0 / 50</td></loq<>	0 / 50		
	1,1,1,2-Tetrafluoroethane (134a)	16	<loq< td=""><td><loq< td=""><td>720</td><td>4 / 50</td><td>_</td><td><loq< td=""><td><loq< td=""><td>0.08</td><td>1 / 50</td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>720</td><td>4 / 50</td><td>_</td><td><loq< td=""><td><loq< td=""><td>0.08</td><td>1 / 50</td></loq<></td></loq<></td></loq<>	720	4 / 50	_	<loq< td=""><td><loq< td=""><td>0.08</td><td>1 / 50</td></loq<></td></loq<>	<loq< td=""><td>0.08</td><td>1 / 50</td></loq<>	0.08	1 / 50		
	Hexachlorocyclopentadiene	_	<loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td><td></td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0 / 50</td><td></td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>0 / 50</td><td></td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<></td></loq<>	0 / 50		<loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<>	<loq< td=""><td>0 / 50</td></loq<>	0 / 50		
Esters	Butyl formate	0.07	<loq< td=""><td><loq< td=""><td>3.3</td><td>2 / 50</td><td>_</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>3.3</td><td>2 / 50</td><td>_</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<></td></loq<>	3.3	2 / 50	_	<loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<>	<loq< td=""><td>0 / 50</td></loq<>	0 / 50		
	Methyl acetate	2.1	0.46	<loq< td=""><td>49</td><td>27 / 50</td><td>0.02</td><td><loq< td=""><td><loq< td=""><td>0.91</td><td>1 / 50</td></loq<></td></loq<></td></loq<>	49	27 / 50	0.02	<loq< td=""><td><loq< td=""><td>0.91</td><td>1 / 50</td></loq<></td></loq<>	<loq< td=""><td>0.91</td><td>1 / 50</td></loq<>	0.91	1 / 50		
	Ethyl acetate	5.1	3.2	<loq< td=""><td>60</td><td>44 / 50</td><td>1.7</td><td><loq< td=""><td><loq< td=""><td>19</td><td>19 / 50</td></loq<></td></loq<></td></loq<>	60	44 / 50	1.7	<loq< td=""><td><loq< td=""><td>19</td><td>19 / 50</td></loq<></td></loq<>	<loq< td=""><td>19</td><td>19 / 50</td></loq<>	19	19 / 50		
	Vinyl acetate	0.29	<loq< td=""><td><loq< td=""><td>3.4</td><td>13 / 50</td><td>0.01</td><td><loq< td=""><td><loq< td=""><td>0.34</td><td>1 / 50</td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>3.4</td><td>13 / 50</td><td>0.01</td><td><loq< td=""><td><loq< td=""><td>0.34</td><td>1 / 50</td></loq<></td></loq<></td></loq<>	3.4	13 / 50	0.01	<loq< td=""><td><loq< td=""><td>0.34</td><td>1 / 50</td></loq<></td></loq<>	<loq< td=""><td>0.34</td><td>1 / 50</td></loq<>	0.34	1 / 50		
	Propyl acetate	0.13	<loq< td=""><td><loq< td=""><td>0.98</td><td>11 / 50</td><td>0.08</td><td><loq< td=""><td><loq< td=""><td>1.2</td><td>5 / 50</td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>0.98</td><td>11 / 50</td><td>0.08</td><td><loq< td=""><td><loq< td=""><td>1.2</td><td>5 / 50</td></loq<></td></loq<></td></loq<>	0.98	11 / 50	0.08	<loq< td=""><td><loq< td=""><td>1.2</td><td>5 / 50</td></loq<></td></loq<>	<loq< td=""><td>1.2</td><td>5 / 50</td></loq<>	1.2	5 / 50		
	Butyl acetate	3.1	1.3	<loq< td=""><td>46</td><td>38 / 50</td><td>0.50</td><td><loq< td=""><td><loq< td=""><td>3.2</td><td>19 / 50</td></loq<></td></loq<></td></loq<>	46	38 / 50	0.50	<loq< td=""><td><loq< td=""><td>3.2</td><td>19 / 50</td></loq<></td></loq<>	<loq< td=""><td>3.2</td><td>19 / 50</td></loq<>	3.2	19 / 50		
	Isobutyl acetate	0.59	0.20	<loq< td=""><td>4.6</td><td>27 / 50</td><td>0.16</td><td><loq< td=""><td><loq< td=""><td>3.5</td><td>14 / 50</td></loq<></td></loq<></td></loq<>	4.6	27 / 50	0.16	<loq< td=""><td><loq< td=""><td>3.5</td><td>14 / 50</td></loq<></td></loq<>	<loq< td=""><td>3.5</td><td>14 / 50</td></loq<>	3.5	14 / 50		
	Isopropyl acetate	0.01	<loq< td=""><td><loq< td=""><td>0.72</td><td>1 / 50</td><td></td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>0.72</td><td>1 / 50</td><td></td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<></td></loq<>	0.72	1 / 50		<loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<>	<loq< td=""><td>0 / 50</td></loq<>	0 / 50		
	2-Methoxyethyl acetate		<loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td><td>_</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0 / 50</td><td>_</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>0 / 50</td><td>_</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<></td></loq<>	0 / 50	_	<loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<>	<loq< td=""><td>0 / 50</td></loq<>	0 / 50		
	2-Ethoxyethyl acetate	0.51	<loq< td=""><td><loq< td=""><td>16</td><td>6 / 50</td><td>_</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>16</td><td>6 / 50</td><td>_</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<></td></loq<>	16	6 / 50	_	<loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<>	<loq< td=""><td>0 / 50</td></loq<>	0 / 50		
	2-Ethylhexyl acetate	0.05	<loq< td=""><td><loq< td=""><td>2.4</td><td>1 / 50</td><td>_</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>2.4</td><td>1 / 50</td><td>_</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<></td></loq<>	2.4	1 / 50	_	<loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<>	<loq< td=""><td>0 / 50</td></loq<>	0 / 50		
	Linalyl acetate	_	<loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td><td></td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0 / 50</td><td></td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>0 / 50</td><td></td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<></td></loq<>	0 / 50		<loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<>	<loq< td=""><td>0 / 50</td></loq<>	0 / 50		
	Methacrylic acid methyl ester	0.08	<loq< td=""><td><loq< td=""><td>2.0</td><td>4 / 50</td><td>0.02</td><td><loq< td=""><td><loq< td=""><td>0.83</td><td>1 / 50</td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>2.0</td><td>4 / 50</td><td>0.02</td><td><loq< td=""><td><loq< td=""><td>0.83</td><td>1 / 50</td></loq<></td></loq<></td></loq<>	2.0	4 / 50	0.02	<loq< td=""><td><loq< td=""><td>0.83</td><td>1 / 50</td></loq<></td></loq<>	<loq< td=""><td>0.83</td><td>1 / 50</td></loq<>	0.83	1 / 50		
04	TXIB	0.02	<loq< td=""><td><loq< td=""><td>0.82</td><td>1 / 50</td><td>_</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>0.82</td><td>1 / 50</td><td>_</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<></td></loq<>	0.82	1 / 50	_	<loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<>	<loq< td=""><td>0 / 50</td></loq<>	0 / 50		
Other	Methyl- <i>tert</i> -butylether		<loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td><td>_</td><td><loq< td=""><td><loq< td=""><td>0.19</td><td>1 / 50</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0 / 50</td><td>_</td><td><loq< td=""><td><loq< td=""><td>0.19</td><td>1 / 50</td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>0 / 50</td><td>_</td><td><loq< td=""><td><loq< td=""><td>0.19</td><td>1 / 50</td></loq<></td></loq<></td></loq<>	0 / 50	_	<loq< td=""><td><loq< td=""><td>0.19</td><td>1 / 50</td></loq<></td></loq<>	<loq< td=""><td>0.19</td><td>1 / 50</td></loq<>	0.19	1 / 50		
	1 etrahydrofuran (1 HF)	0.20	<loq< td=""><td><loq< td=""><td>3.1</td><td>12 / 50</td><td>_</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>3.1</td><td>12 / 50</td><td>_</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<></td></loq<>	3.1	12 / 50	_	<loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<>	<loq< td=""><td>0 / 50</td></loq<>	0 / 50		
	2-rentyituran	0.03	<loq< td=""><td><loq< td=""><td>0.81</td><td>3 / 50</td><td></td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>0.81</td><td>3 / 50</td><td></td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<></td></loq<>	0.81	3 / 50		<loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<>	<loq< td=""><td>0 / 50</td></loq<>	0 / 50		
	1,4-Dioxane	0.02	<loq< td=""><td><loq< td=""><td>0.39</td><td>3 / 50</td><td>0.01</td><td><loq< td=""><td><loq< td=""><td>0.50</td><td>1 / 50</td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>0.39</td><td>3 / 50</td><td>0.01</td><td><loq< td=""><td><loq< td=""><td>0.50</td><td>1 / 50</td></loq<></td></loq<></td></loq<>	0.39	3 / 50	0.01	<loq< td=""><td><loq< td=""><td>0.50</td><td>1 / 50</td></loq<></td></loq<>	<loq< td=""><td>0.50</td><td>1 / 50</td></loq<>	0.50	1 / 50		
	Phenol	0.23	<loq< td=""><td><loq< td=""><td>2.3</td><td>14 / 50</td><td>0.07</td><td><loq< td=""><td><loq< td=""><td>3.4</td><td>1 / 50</td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>2.3</td><td>14 / 50</td><td>0.07</td><td><loq< td=""><td><loq< td=""><td>3.4</td><td>1 / 50</td></loq<></td></loq<></td></loq<>	2.3	14 / 50	0.07	<loq< td=""><td><loq< td=""><td>3.4</td><td>1 / 50</td></loq<></td></loq<>	<loq< td=""><td>3.4</td><td>1 / 50</td></loq<>	3.4	1 / 50		
	Cresol	-	<loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td><td>_</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0 / 50</td><td>_</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>0 / 50</td><td>_</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<></td></loq<>	0 / 50	_	<loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<>	<loq< td=""><td>0 / 50</td></loq<>	0 / 50		
	2,6-D1- <i>tert</i> -buty-1-4-methylphenol		<loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td><td>_</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0 / 50</td><td>_</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>0 / 50</td><td>_</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<></td></loq<>	0 / 50	_	<loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<>	<loq< td=""><td>0 / 50</td></loq<>	0 / 50		
	Acrylonitrile	0.04	<loq< td=""><td><loq< td=""><td>0.87</td><td>3 / 50</td><td></td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>0.87</td><td>3 / 50</td><td></td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<></td></loq<>	0.87	3 / 50		<loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<>	<loq< td=""><td>0 / 50</td></loq<>	0 / 50		
	Caprolactam	0.12	<loq< td=""><td><loq< td=""><td>5.8</td><td>1 / 50</td><td>_</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>5.8</td><td>1 / 50</td><td>_</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<></td></loq<>	5.8	1 / 50	_	<loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<>	<loq< td=""><td>0 / 50</td></loq<>	0 / 50		
	Carbon disulfide	0.48	<loq< td=""><td><loq< td=""><td>17</td><td>2 / 50</td><td>_</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>17</td><td>2 / 50</td><td>_</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<></td></loq<>	17	2 / 50	_	<loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<>	<loq< td=""><td>0 / 50</td></loq<>	0 / 50		
	Indene	-	<loq< td=""><td><loq< td=""><td>0.13</td><td>1 / 50</td><td></td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>0.13</td><td>1 / 50</td><td></td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<></td></loq<>	0.13	1 / 50		<loq< td=""><td><loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0 / 50</td></loq<></td></loq<>	<loq< td=""><td>0 / 50</td></loq<>	0 / 50		
1	Isopnorone	0.02	<luq< td=""><td><loq< td=""><td>0.42</td><td>4 / 50</td><td></td><td>I <luq< td=""><td><loq< td=""><td>I <loq< td=""><td>0 / 50</td></loq<></td></loq<></td></luq<></td></loq<></td></luq<>	<loq< td=""><td>0.42</td><td>4 / 50</td><td></td><td>I <luq< td=""><td><loq< td=""><td>I <loq< td=""><td>0 / 50</td></loq<></td></loq<></td></luq<></td></loq<>	0.42	4 / 50		I <luq< td=""><td><loq< td=""><td>I <loq< td=""><td>0 / 50</td></loq<></td></loq<></td></luq<>	<loq< td=""><td>I <loq< td=""><td>0 / 50</td></loq<></td></loq<>	I <loq< td=""><td>0 / 50</td></loq<>	0 / 50		

 Table 1
 VOC concentrations in the indoor and outdoor air (continued)

^a Could not be calculated because all samples were below the limit of quantitation.

^b Below the limit of quantitation.

Sum of the VOCs (µg/m³)

Fig. 1 Frequency distribution of the sum of indoor air VOCs. The oblique bars indicate those data exceeding the provisional guideline value for TVOC.

most abundant terpene did vary: -pinene for C, E and G and limonene for O. Interestingly, residences C, E and G were less than one-year old at the time of air sampling. Therefore, the rather high concentrations of -pinene might be attributable to emission from the woody building materials. In contrast, residence O was a ten-year old building, and the high limonene concentration was not associated with elevated levels of other terpenes. We believe the limonene detected in residence O might be derived from aroma products. Finally, residence H was primarily polluted with 1,1,1,2-tetrafluoroethane (74%), suggesting accidental leakage from a household appliance such as a refrigerator. In conclusion, we have analyzed 132 VOCs in indoor and outdoor air samples collected from 50 residences in Japan, and identified the most abundant chemical classes (i.e. linear and branched-chain alkanes, alkylbenzenes and terpenes). The results presented here are important in establishing the target compound list for TVOC analysis in Japan, as well as assessing the current status of indoor air quality.

Acknowledgments

This study was financially supported by the MHLW of Japan. The authors would like to thank Ms. Yumiko Nomura, Pharmaceutical and Food Safety Bureau of the MHLW for her insightful discussion on this survey.

References

- 1) Ando, M.: Bull. Natl. Inst. Health Sci., 120, 6-38 (2002)
- Saijo, Y., Kishi, R., Sata, F., Katakura, Y., Urashima, Y., Hatakeyama, A., Kobayashi, S., Jin, K., Kurahashi, N., Kondo, T., Gong, Y. Y. and Umemura, T.: *Int. Arch. Occup. Environ. Health*, 77, 461-470 (2004)
- 3) Sakai, K., Norback, D., Mi, Y., Shibata, E., Kamijima, M., Yamada, T. and Takeuchi, Y.: *Environ. Res.*, 94, 75-85 (2004)
- 4) Sakaguchi, J. and Akabayashi, S.: *Indoor Air*, 13 (Suppl 6), 42-49 (2003)
- 5) Minami, T., Matsumoto, H., Kondo, F., Yamada, S., Matsumura, T., Ando, M. and Miyazaki, Y.: *Jpn. J. Pub. Health*, 49, 211-221 (2002)

Fig. 2 Chemical classes of the VOCs for the samples that exceeded the provisional guideline value for TVOC.