表1 市販缶入飲料中のビスフェノールA含有量(飲料の種類別)

ALIVI OF THE	TV \1-74.	+∆ 111 ¥/-	ビスフェ	ノールA量	(ng/mL)
飲料の種類	検体数	検出数 	最小値	最大値	平均値
コーヒー	13	11	ND	213	41
紅 茶	9	4	ND	90	20
茶	8	5	ND	22	7
アルコール	10	1	ND	13	1
清涼飲料	7	0	ND	ND	-

ND < 2 ng/mL

表2 ビスフェノールA含有量が高かった試料

		飲料中の濃度(ng/mL)	1 缶あたりの総量(μg)
コーヒー	A	134	25
コーヒー	В	213	40
紅 茶	A	53	18
紅 茶	В	90	31

表3 モデル缶における内面コーティングの材質判別

			相	当 缶			改	良 缶	
		天蓋	側面	底蓋	サイト゛シーム	天蓋	側面	底蓋	サイト゛シーム
コーヒー	A	PVC	PET	EP	EP	EP	РЕТ	EP	EP
コーヒー	В	PVC	PET	EP	EP	EP	PET	EP	EP
紅 茶	A	PVC	EP	EP	EP	EP	EP	EP	EP
紅 茶	В	PVC	EP	EP	EP	_	_		

表4 モデル缶内面コーティング中のビスフェノールA含有量

				当 缶					良 缶		
		天蓋 ng/cm²	側面 ng/cm²	底蓋 ng/cm²	サイト゛ ng/cm²	全缶 μg	天蓋 ₂ ng/cm²	側面 ng/cm²	底蓋 ng/cm²	サイト゛ ng/cm²	全缶 μg
コーヒー	A	ND	ND	5	2066	15. 6	10	ND	3	40	0.5
コーヒー	В	7	2	984	145	29. 5	3	ND	8	118	1.3
紅茶	A	6	52	9	106	12. 1	6	4	4	25	1.3
紅茶	В	7	34	867	435	35. 7					_

 $ND < 2 \text{ ng/cm}^2$

表 5 モデル缶の溶出試験(食品衛生法に準じた試験)

溶出溶媒	溶出温度	溶出時間	溶出量
水	60℃	30分間	溶出なし(<1 ppb)
水	95℃	30分間	溶出なし(<1 ppb)
20%エタノール	60℃	30分間	溶出なし(<1 ppb)
n-ヘプタン	25℃	60分間	溶出なし(<1 ppb)

表 6 モデル缶の溶出試験(水120℃))

			相当缶			改良缶	
		10分間	30分間	60分間	10分間	30分間	60分間
コーヒー	A	64	82	87	4	3	5
コーヒー	В	99	124	166	3	6	4
紅茶	A		35	_	_	4	
紅茶	В		95	_	-	_	_

表 7 飲料からのビスフェノールA及びBADGE関連化合物の添加回収試験

iw 4€		回収率	(%)	
試 料	BPA	BADGE	BADGE-40H	BADGE-2C1
水	102. 3 ± 2.4	96. 7 ± 4.2	107. 2 ± 1.7	94. 4 ± 8.9
緑茶	99.6 \pm 1.1	75. 5 ± 4.9	81. 7 ± 2.1	98.5 \pm 1.0
紅 茶	99.8 \pm 0.7	98. 4 ± 3.8	90. 2 ± 3.8	96.8 \pm 1.6
スホ゜ーツト゛リンク	99.6 \pm 0.3	96. 7 ± 3.3	97.9 \pm 2.1	94. 2 ± 2.0
炭酸飲料	101.6 \pm 0.4	96.8 \pm 2.4	96.0 \pm 3.0	97. 3 ± 1.1
果汁飲料	97.9 ± 0.7	92. 1 ± 2.3	81.0 ± 4.2	74.0 \pm 3.0
ビール	96.0 \pm 3.2	83. 4 ± 4.0	93. 1 ± 3.7	91. 2 ± 3.1

表8 紅茶飲料中のビスフェノールA及びBADGE関連化合物

		BPA		В	ADGE-40	Н	В	ADGE-2C	l		BADGE	
No.	Conc. N (ng/mL)(ligration ng/cm²) (Total μg/can)		Migration)(ng/cm²)(Migration)(ng/cm²)(Migration)(ng/cm²)(
1	ND a)	ND	ND	ND a)	ND	ND	ND a)	ND	ND	ND a)	ND	ND
2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
8	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
9	ND	ND	ND	2.0	2.3	0.7	ND	ND	ND	ND	ND	ND
10	ND	ND	ND	3.0	3.0	0.6	ND	ND	ND	ND	ND	ND
11	ND	ND	ND	4.2	4.2	0.8	ND	ND	ND	ND	ND	ND
12	ND	ND	ND	11.0	12.9	3.7	ND	ND	ND	ND	ND	ND
13	ND	ND	ND	15.9	18.6	5.4	ND	ND	ND	ND	ND	ND
14	ND	ND	ND	26.8	31.4	9.1	ND	ND	ND	ND	ND	ND
15	ND	ND	ND	191.7	224.3	65.2	ND	ND	ND	ND	ND	ND
16	2.4	2.6	1.3	125.6	134.4	61.5	ND	ND	ND	ND	ND	ND
17	4.3	5.1	1.5	87.1	101.9	29.6	ND	ND	ND	ND	ND	ND
18	5.0	5.3	2.5	98.4	105.3	48.2	ND	ND	ND	ND	ND	ND
19	14.2	16.6	4.8	93.3	109.2	31.7	ND	ND	ND	ND	ND	ND

a) ND< 2.0ng/mL

表 9 茶飲料中のビスフェノールA及びBADGE関連化合物

		ВРА			BADGE-40	ЭН		BADGE-2	CI		BADGE	
No.	Conc. (ng/mL)	Migration (ng/cm²)	Total (µg/can)	Conc. (ng/mL)	Migration (ng/cm²)	Total (μg/can)	Conc. (ng/mL)	Migration (ng/cm²)	Total (μg/can)	Conc. (ng/mL)	Migration (ng/cm²)	Total (μg/can)
B1	ND a)	ND	ND	ND *)	ND	ND	ND a)	ND	ND	ND a)	ND	ND
B2	ND	ND	ND									
ВЗ	2.0	2.2	1.0	61.6	67.1	30.2	ND	ND	ND	ND	ND	ND
34	4.6	5.2	1.6	120.6	136.3	41.0	ND	ND	ND	ND	ND	ND
G1	ND	ND	ND									
G2	ND	ND	ND									
G3	ND	ND	ND									
G4	ND	ND	ND									
3 5	ND	ND	ND									
G6	ND	ND	ND	6.4	7.2	2.2	ND	ND	ND	ND	ND	ND
3 7	ND	ND	ND	10.1	10.1	2.5	ND	ND	ND	ND	ND	ND
G8	ND	ND	ND	9.8	11.1	3.3	ND	ND	ND	ND	ND	ND
G9	ND	ND	ND	43.6	46.5	20.9	ND	ND	ND	ND	ND	ND
G10	3.2	3.6	1.1	5.6	6.3	1.9	ND	ND	ND	ND	ND	ND
G11	5.3	6.0	1.8	191.1	215.9	65.0	ND	ND	ND	ND	ND	ND
G12	5.6	5.6	1.1	240.5	240.5	45.7	ND	ND	ND	ND	ND	ND
0 1	ND	ND	ND	24.2	24.2	4.6	ND	ND	ND	ND	ND	ND
02	2.2	2.2	0.5	4.4	4.4	1.1	ND	ND	ND	ND	ND	ND
03	2.5	2.8	0.9	8.8	9.9	3.0	ND	ND	ND	ND	ND	ND
H1	ND	ND	ND									
H2	3.5	4.0	1.2	3.8	4.3	1.3	ND	ND	ND	ND	ND	ND
НЗ	5.1	5.8	1.7	7.6	8.6	2.6	ND	ND	ND	ND	ND	ND
H4	7.5	7.5	1.2	6.2	6.2	1.0	ND	ND	ND	ND	ND	ND
H5	22.9	22.9	4.4	99.3	99.3	18.9	ND	ND	ND	ND	ND	ND

a) ND< 2.0ng/mL

B: 玄米茶、G: 緑茶、O: ウーロン茶、H: 健康茶

表10 清涼飲料中のビスフェノールA及びBADGE関連化合物

		BPA		E	ADGE-40	Н	E	BADGE-20	1		BADGE	
No.		ligration (ng/cm²)(Migration .)(ng/cm²)(Migration)(ng/cm²)(Conc. (ng/mL	Migration)(ng/cm²)	Total (μg/can
S1	ND a)	ND	ND	ND a)	ND	ND	ND a)	ND	ND	ND a)	ND	ND
S2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
S3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
S4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
\$5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
S6	ND	ND	ND	8.1	9.2	2.8	6.8	7.7	2.3	ND	ND	ND
F1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
F2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
F3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
F4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
F5	ND	ND	ND	12.3	12.3	2.0	4.8	4.8	0.8	ND	ND	ND
F6	ND	ND	ND	16.0	16.0	4.5	ND	ND	ND	ND	ND	ND
C1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
C2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

a) ND< 2.0ng/mL

S:スポーツドリンク、F:果汁飲料、C:炭酸飲料

表11 アルコール飲料中のビスフェノールA及びBADGE関連化合物

		BPA		В.	ADGE-40	Н	В	ADGE-2C]		BADGE	
		Migration (ng/cm²)(Migration (ng/cm²)(Conc. (ng/mL)	Migration (ng/cm²)(Total μg/can)	Conc. (ng/mL)	Migration (ng/cm²)(Total µg/can
B 1	ND a	ND	ND	ND a)	ND	ND	ND a)	ND	ND	ND 4	ND	ND
B2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
В3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
₿4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B 5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
В7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B8	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
L1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
L2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
L3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
L4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
L5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
L6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
_7	ND	ND	ND	108.7	108.7	27.2	23.1	23.1	5.8	ND	ND	ND

a) ND< 2.0ng/mL

B:ビール、L:リカー類

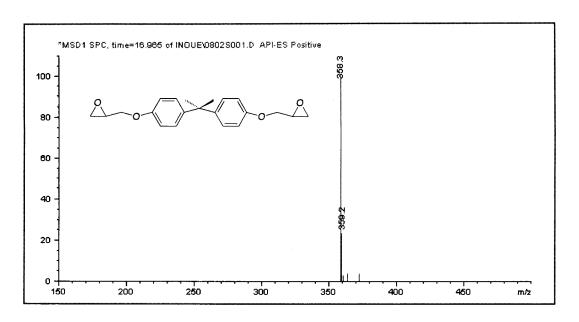


図1 ビスフェノールAジグリシジルエーテル(BADGE)のLC/MSスペクトルスキャンレンジ:m/z 150~500 イオン化法: エレクトロスプレイ、ポジティブフラグメンター電圧:50 V

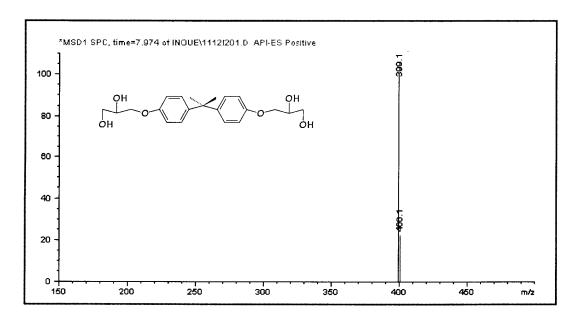


図 2 ビスフェノール A ジグリシジルエーテル四水酸化体 (BADGE-40H) の LC/MS スペクトル

スキャンレンジ: m/z 150~500

イオン化法: エレクトロスプレイ、ポジティブ

フラグメンター電圧:50 V

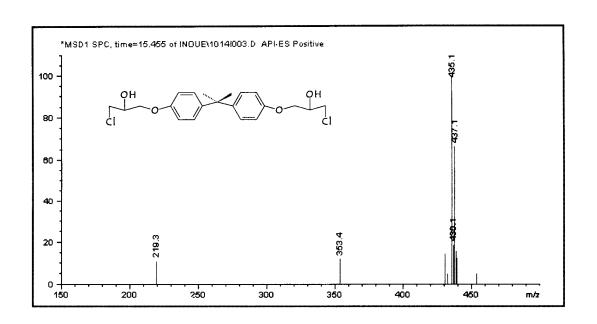


図3 ビスフェノールAジグリシジルエーテル二塩素化体(BADGE-2C1)の LC/MSスペクトル

スキャンレンジ: m/z 150~500

イオン化法: エレクトロスプレイ、ポジティブ

フラグメンター電圧:50 V