ISPE, Yokohama, Japan June 9, 2006

Implementation of ICH Q8 and QbD – An FDA Perspective

Chi-wan Chen, Ph.D. Office of New Drug Quality Assessment Center for Drug Evaluation and Research Food and Drug Administration

- ICH Q8
- FDA's implementation of Q8
- FDA's view on quality by design (QbD)
- QbD system for pharmaceutical development
- FDA CMC (chemistry, manufacturing, & controls) Pilot Program
- Summary

Q8 - Design Space

- Definition: The multidimensional combination and interaction of input variables (e.g., material attributes) and process parameters that have been demonstrated to provide assurance of quality
- Working within the design space is not considered as a change. Movement out of the design space is considered to be a change and would normally initiate a regulatory post-approval change process.
- Design space is proposed by the applicant and is subject to regulatory assessment and approval

Q8 - Regulatory Flexibility

- Proposed by applicant, and approved by regulator, based on demonstrated product knowledge and process understanding
- Degree of regulatory flexibility is predicated on the level of relevant scientific knowledge provided
- Opportunities to facilitate
 - risk-based regulatory decisions (reviews and inspections)
 - manufacturing process improvements, within the approved design space described in the dossier, without further regulatory review
 - reduction of post-approval submissions
 - real-time quality control, leading to a reduction of endproduct release testing

FDA's Implementation of Q8

- Reorganization of Office of New Drug Chemistry to become Office of New Drug Quality Assessment (ONDQA) in November 2005
 - Separation of pre-marketing from post-marketing review activities to better utilize limited resources
 - Establishment of Manufacturing Science Branch and recruitment of pharmaceutical scientists, chemical engineers, and industrial pharmacists to complement current review staff
- Establishment of a new pharmaceutical quality assessment system (PQAS)
- Public workshops (10/05 & 2/07) on quality-by-design
- CMC Pilot Program

- PQAS is ONDQA's new science- and riskbased approach to CMC review that
 - Emphasizes submissions rich in scientific information demonstrating product knowledge and process understanding
 - Focuses on critical pharmaceutical quality attributes and their relevance to safety and effectiveness
 - Enables FDA to provide regulatory flexibility for specification setting and post-approval changes
 - Facilitates innovation and continuous improvement throughout product lifecycle

5

Moheb Nasr, FDA, 2006

FDA's View on QbD

- The CMC information currently required in an NDA is adequate to support approval in the U.S.
- However, QbD is the desired approach
 - QbD principles should result in a higher level of assurance of product quality
 - Additional product and process understanding may result in regulatory flexibility
- QbD is full understanding of product and process as they relate to product performance
 - QbD is more than process and formulation optimization
 - QbD is more than justification of CQAs and CPPs
 - This may be an iterative/continuous process

QbD System – Product Performance and Product Design

- Define targeted product performance requirements in early phases of development
 - route of administration, dosage form, strength, optimum dose, therapeutic index, PK profile, etc.
- Product Design
 - Identify critical quality attributes of DP to meet targeted product performance requirements
 - Formulation components
 - Select excipients based on compatibility and product performance requirements
 - Understand chemical and physical properties of DS and excipients and how they may influence downstream manufacturability, process parameters, and/or product performance
 - Understand variability of components and how to best control it

9

QbD System – Designing/Setting Specifications

- Relate specifications to critical quality attributes
 - Summarize how relationships were established
 - DOE
 - Prior knowledge
- Base specifications on CQAs and product and process understanding
- Propose acceptance criteria based on scientific rationale by using appropriate methods, including statistical analysis

QbD System – Regulatory Flexibility

- Certain traditional end product release testing may prove to be unnecessary (dissolution, content uniformity, etc.) through QbD
- Supportive data are needed to justify an expanded design space that could serve as the basis for future regulatory flexibility (e.g., site change and equipment change)
 - Design space for one type of dryer vs. design space for any kind of drying
- Opportunities for real time release (RTR)

CMC Pilot Program - Objectives

- To provide participating firms an opportunity to submit CMC information demonstrating
 - application of quality-by-design (QbD) principles
 - product knowledge and process understanding
- To enable FDA to evaluate
 - CQOS; new concepts and approaches (e.g., design space, real-time release) in Q8 and PAT Guidance; CMC Agreement; team review
- To enable FDA to seek public input in developing a guidance on the new PQAS

15

CMC Pilot - Expanded PD (P.2)

- 3.2.S.2.6 in certain pilot NDAs provided more process understanding information in DS than in typical NDAs
- 3.2.P.2 in all pilot NDAs provided more scientific information than typical NDAs regarding DP
 - formulation and product development
 - process understanding and optimization
- All pilot NDAs to date contained some aspects of QbD, though not the entire system approach
- Most demonstrated process reproducibility, but not necessarily process robustness

CMC Pilot - Application of QbD

The following were in various pilot NDAs:

- Critical quality attributes (CQAs) identified
- Impact of excipients properties discussed
- Design space for process parameters established
- Process reproducibility, but not necessarily process robustness, demonstrated
- Process analyzers used to collect data in development, but not for commercial production

CMC Pilot - Design Space

Issues raised:

- How were design space and control space established for each unit operation?
- Is the design space for each unit operation independent of equipment design and batch size?
- How does control space relate to design space?
- How does control space relate to operational ranges in the Master Batch Record?

CMC Pilot - Regulatory Flexibility

CMC Pilot - Design Space Changes Post-Approval

Issues raised:

- How will the design space be reassessed, verified, or redefined when a change is made in a unit operation, process parameters, inprocess controls, or when a new piece of equipment is introduced?
- What is the regulatory strategy for managing changes in design space, including expanding and contracting the design space, for critical and non-critical parameters?

CMC Pilot - Regulatory Agreement

An agreement between FDA and applicant which

- Identifies CQAs, CPPs, and design space
- Describes how changes to CQAs and CPPs will be managed
- Describes how design space will be reassessed, verified, or redefined
 - when a change is made in a unit operation, process parameters, in-process controls, or
 - when a new piece of equipment is introduced
- Describes the regulatory strategy for managing changes in design space, including expanding and contracting, for CPPs and non-CPPS

21

CMC Pilot - Benefits

- Pilot enables industry and FDA to
 - explore ways to implement Q8 and PQAS
- Pilot enables FDA to
 - better define what constitutes a QbD-based submission
 - better define what constitutes a science-based risk assessment
 - use experience gained to develop a guidance on QbD and PQAS
- Good science leads to better quality product, fewer product rejects/recalls, and enhanced public health protection

CMC Pilot - Challenges

- Expectations for a QbD-based submission while addressing traditional requirements
- Providing regulatory flexibility while assuring product quality
- Industry's continuous apprehension in sharing information, including failed experiments, with FDA
- Cultural changes needed in industry and FDA
- More resources needed initially

- FDA embraces Q8 and encourages applicants to apply QbD principles to their drug development
- FDA is exploring ways to facilitate implementation of Q8 and QbD
- CMC Pilot Program is very useful to FDA as it implements QbD and develop PQAS
- FDA is committed to developing ICH Q8(R) to provide additional guidance and clarity on PD
- Challenges remain for industry and FDA as we move forward

Design Space ; Current version

Defined in Step 4 document (Chicago, November 2005)

Design Space: the *multidimensional* combination and interaction of input variables (e.g., material attributes) and process parameters that have been demonstrated to provide assurance of quality.

Working within the design space is not considered as a change.

<u>Movement out of</u> the design space is considered to be a <u>change</u> and would normally <u>initiate a regulatory post approval change process</u>.

Design space is proposed by the applicant and is subject to regulatory assessment and approval.

Japanese Pharmaceutical Affairs Law

Requirement of <u>detailed description</u> in application form about <u>manufacturing and</u> <u>manufacturing control</u>

Approval matters

Partial change after review Minor change by notification

<u>Examp</u>	gn of Exp <u>de</u> Manufacturi tudy in Takeda	ing Parameters	5	
Run	Factor 1	Factor 2	Factor 3	Factor 4
1	4000(-)	10(+)	80(+)	360(-)
2	4000(-)	10(+)	70(-)	420(+)
3	5000(+)	10(+)	80(+)	420(+)
4	4000(-)	6(-)	70(-)	360(-)
5	5000(+)	10(+)	70(-)	360(-)
6	5000(+)	6(-)	80(+)	360(-)
7	5000(+)	6(-)	70(-)	420(+)
8	4000(-)	6(-)	80(+)	420(+)

Specification

Content, Content Uniformity, Dissolution etc

Design of Experiment

Example Manufacturing Parameters Case Study in Takeda

Multivariate Analysis Determining which parameters drive effects

Met Specification

Content, Content Uniformity, Dissolution etc

Design Space would be

Parameter 1: 4000 - 5000

Parameter 2: 6 - 10

Parameter 3: 70 - 80

Parameter 4: 360 - 420

JPN	A Propos	al		
	Development Stage	manufacturing para scale	meters for commertial	Comment
Previous Style for Application	Validation 3Lots (Design Point) Knowledge was not well described in the Application, although applicants understand or it was not required			No Good
Baseline (Q8 step 4)	Knowledge	(Design Space)	Vaildation 3Lots	Acceptable
Quality by Design Desired State	Knowledge	Design Space	continuous process verification	Desired State (Excellent companies)
 More flexible opportunities for both process and formulation 				

<u>Validation_approach_with_Knowledge_as_a_base_for_Design</u>
 <u>Space</u>

Design Space for	⁻ Formula	ation Att	ributes
Formulation	A	В	С
Active Substance	10	10	10
Excipient 1	0.1	0.2	0.3
Others	89.9	89.8	89.7
Total (%)	100	100	100
Formulation	А	В	
Active Substance	10	10	
Excipient 1	80	0	
Excipient 2	0	80	
Others	10	10	
Total (%)	100	100	

Design Space for Formulation Attributes Examples of Lubricant

The amount of lubricant in each tablet is variable. (Example 1) less than 0.1 % \rightarrow Not regarded as "Biryo" (Example 2) $0.21^{\sim} 1.16$ %

Opportunities for More Flexible approach !

Applicants need to discuss with authorities to establish the design space.

IPJ-2 (INTERPHEX JAPAN May 17 2006) Formulation attributes are described in the case of Design Space by National Institute of Health Sciences.

Application of Design Space into Application Form

Product <u>specifications based on mechanistic</u> <u>understanding</u> of how formulation and process factors impact product performance

An ability to effect Continuous Improvement and Continuous "real time" assurance of quality

- Experiences
- Risk management/analysis
- Statistics analysis
 - Experimental design, multivariate analysis, principal
 - component analysis, Taguchi quality engineering, etc.

Design Space Traditional vs. New Paradigm

Quality Attributes - 'Critical' & 'Key' (Pfizer Definitions)

- Quality Attribute (QA) A physical, chemical, or microbiological property or characteristic of a material that may directly or indirectly impact product quality or the effectiveness of a process
 - Each Quality Attribute has an associated analytical method.
- Critical Quality Attribute (CQA) A physical, chemical, or microbiological property or characteristic of a material, associated with an analytical method, that <u>directly or indirectly impacts</u> predefined product criteria (safety, product performance, quality & marketability)
- Key Quality Attribute (KQA) A property or characteristic that <u>has</u> <u>the potential to impact</u> pre-defined product criteria (safety, product performance, quality & marketability)

Process Parameters - 'Critical' & 'Key' (Pfizer Definitions)

- Process Parameter an all-inclusive term used to describe a parameter used during production to adjust or monitor the process
 - Design Space defines boundaries for each process parameter
- Critical Process Parameter (CPP) A process parameter that <u>influences critical quality attributes</u> (CQA)
- Key Process Parameter (KPP) A process parameter that is assessed as <u>having the potential to impact</u> product quality or process effectiveness

Summary of Roller Compaction Studies

Parameter	Boundary Results	Control	CPP / KPP
Roll Force	Target and operating range identified	Batch Record	KPP
Roll Speed	Target and operating range identified	Batch Record	No
Gap Width	Target and operating range identified	Batch Record	KPP
Granulator Screen Size	Target and operating range identified	Batch Record	KPP
Granulator Speed	Target and operating range identified	Batch Record	No
Roll Type	Deep pocket, knurled, and serrated are demonstrated	Batch Record	No

17

Compression: Identifying "Edge of Failure" for Content Uniformity

Summary of Compression/Content Uniformity Study

Parameter	Boundary Results	Control	CPP / KPP
Main Compression Force	Operating target and range identified	Batch Record	No
Tablet Press Speed	Operating range identified	Batch Record	No
Press Shut- Off	~ 1.8 kg blend remaining	Automatic press shut-off due to upper punch compression force variability exceeding set point, and hopper sensor	CPP
Tablet Content Uniformity	Unknown	Testing of in-process tablet cores in accordance with stratified sampling draft guidance document	CQA

Step 4: Translate Design Space into manufacturing process of AF: <u>Considerations</u>

Significant interactions among factors

- In the case where there is significant interactions among more than two factors (e.g., quality attributes and process parameters) from the same or different unit operations
 - There is a condition for manufacturing process descriptions of AF where effect of each factor has to be independent

Design space for quality attributes and formulation

- In the case where design space is established for formulation and/or quality attributes directly or indirectly reflected as specification of drug product, drug substance, excipients and intermediate, etc.
 - Changes of formulation and specification are usually considered
 as a post-approval-change application matter

Current Pfizer Approach for Linking Design Space and J-PAL AF Concepts

Classification in Design Space	Proposed Change Control System	Description in AF
CQA and CPP	"Post-approval change (major change) application" matter	Description with 《 》 or without any brackets
KQA and KPP	"Minor change notification" matter	Description with [] or ""
Non-CQA and CPP/non-KQA and KPP	Internal change control	Not describe in AF at all

Challenges for ICH Q8

Edge of failure

Manufacturing description for AF

- Connection between established Design Space and manufacturing description for AF
- Design Space of quality attributes

Update of Design Space

- Much more knowledge after launch

Methodologies or procedures for establishing ICH Q8 may already be available

 Many methodologies to efficiently and securely evaluate many factors relevant to formulation development have been proposed

- Roger Nosal
- Kieran Dignam
- Shigeru Hayashi
- John Berridge
- Robert Baum
- Charles Hoiberg
- Jim Spavins

- Jeff Blumenstein
- Hatsuki Asahara
- Toshiyasu Yamada