Discussion Points for Panel Discussion < Carcinogenicity Studies on **Biopharmaceuticals>** Shigeru Hisada

ASKA Pharmaceutical

Need for carcinogenicity studies on biopharmaceuticals in S1A guideline

- Not to be required:
 Endogenous peptides or proteins and their analogues
 Endogenous substances given essentially as replacement therapy
 To be considered:
- - Treatment duration, clinical indication, patient population
 - Providing neutralizing antibodies not produced to such an extent as to invalidate the results

 - Products where there are significant differences in biological effects to the natural counterparts
 Products where modifications leads to significant changes in structure compared to the natural counterpart
 - Products resulting in humans in a significant increase over the existing local or systemic concentration

Biopharmaceuticals: no concern about direct carcinogenicity

- Proteins and peptides: not permeable across cell membranes and degraded to amino acids
 → not interacted with DNA
 - no concern about direct carcinogenicity
 basically no need for carcinogenicity test
- Exception: bioconjugates with organic linker
 - Evaluation of carcinogenicity of such compounds

 → to follow S1A and S1B guidelines thinking about the bioassay of, for example, a linker-conjugated fragment because of the difficulty of testing of a whole

Biopharmaceuticals with concern about tumor promoter activity

- Some biopharmaceuticals show <u>epigenetic</u> carcinogenesis
 - In many cases, mediated by exage
 - e.g. PTH-induced osterosarcomas in rodent 2-year bioassay
 - Unknown epigenetic mechanism
 - e.g. calcitonin-induced pituitary tumors in a rodent 2-year bioassay
- Causes for concern of epigenetic carcinogenesis
 - Drugs with growth promotive effects
 Growth factors

 - Hormones
 - given at supraphysiological levels
 Agonistic monoclonal antibodies
 - Drugs with immunosuppressive effects
 Therapeutic monoclonal antibodies

Feasibility of rodent two-year bioassay

- Preclinical toxicity studies of biopharmaceuticals should be conducted using pharmacologically relevant species
- Three patterns of relevant species
 - Rodents and non-rodents including non-human primate (NHP)
 - In a 2-year rodent carcinogenicity study, neutralizing antibodies may be produced to reduce blood concentration of the drug, or to induce anaphylaxis or renal lesions
 - NHP only
 - Lifetime carcinogenicity study is impracticable
 - None (except for chimpanzees)
 - Lifetime carcinogenicity study is impossible

Chronic toxicity study / additional study

- In case that a relevant species is present, proliferative lesions may be induced in rodent and/or NHP chronic toxicity studies on biologics with promoter activity
- However, proliferative lesion by itself is insufficient to conclude the tumor promoter activity at present
- Additional studies are to be considered:

 - Stimulation of target cell proliferation
 PCNA immunostain of target tissue in chronic toxicity study
 - RDS (replicative DNA synthesis) if rodent is a relevant species
 - In vitro assay using human target cells
 - Two-step carcinogenicity study in case that rodent is a relevant species

Examples of carcinogenicity evaluation of biopharmaceuticals

- Recombinant insulin
 - Rat 1-year repeated dose toxicity study
 - Growth promotive effects on breast cancer cells
 - Relationships between insulin / IGF receptors and mammary gland tumor development
- Insulin analogues
 - Rat 52-week repeated dose toxicity study
 - Growth promotive effects on human breast cancer fibroblast cell line, human osteosarcoma cell line, hamster CHO cells
- Recombinant FSH
 - 52-week rat and dog repeated dose toxicity studies
 - Growth promotive effects on ovarian cancer cells

Examples of carcinogenicity evaluation of biolopharmaceuticals

- Recombinant basic fibroblast growth factor
 - Mouse : relevant species
 - Two-step skin carcinogenesis study in mice
 - Skin tumor promotion study in nude mice
 - Chronic toxicity studies in rats and monkeys
 - Renal lesions due to antibody production
- Recombinant <u>human α-L-iduronidase</u>
 - 26-week chronic toxicity study using Cynomolgus monkeys
 - No proliferative lesions
- Biologics without carcinogenicity testing
 - Treatment period is less than 6 months
 - No genotoxic and pharmacological effects indicative of carcinogenicity

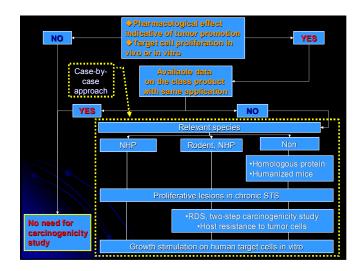
In case of no relevant species

- Conventional preclinical toxicity studies are meaningless
- Human risks of toxicity including carcinogenesis may be considered based on its pharmacology and clinical data are to be collected from deliberate clinical trials
- Another approaches to evaluate toxicity in preclinical studies:
 - Homologous proteins or surrogate antibodies
 Rodent repeated dose toxicity studies

 - Humanized animals
 Human target molecule DNAs are transfected
 - Repeated dose toxicity studies using

 - Knockout or transgenic mice
 Incidence of spontaneous tumors compared with wild type mice

Use of homologous protein


- Repeated dose toxicity study using homologous protein or surrogate antibodies
 - Growth hormone
 - Rat and mouse recombinant growth hormones
 - Two-year carcinogenicity study in rats and mice
 - No carcinogenicities were noted
 - Infliximab (chimeric monoclonal antibody to human TNFα)
 - ullet Only cross-reactive with chimpanzee TNF- lpha
 - 6 month toxicity study in mice treated with anti mouse TNF lpha monoclonal antibody
 - No treatment-related changes
 - Toxicological significance is low because of neutralizing antibody
 - ullet (No increased incidence of spontaneous tumors in TNF lpha -knock-

Use of transgenic animals

- Keliximab (primatized anti-human CD4) monoclonal antibody)
 - Only cross-react with chimpanzee CD4
 - Toxicity studies were carried out using humanized mice (HuCD4/Tg mice, <u>human CD4-transgenic mice</u>)
 - Knock-out/knock-in mice: endogenous mouse CD-4 gene is depleted and transfected human CD-4 gene is functioned to reconstitute immunocompetence
 - Micronucleus test : negative
 - Host resistance to B16 melanoma cells is not altered in the Keliximab-treated HuCD4/Tg mice

Use of transgenic mice

- Growth hormone
 - GH-transgenic mice with GH over-expression
 - Liver tumors are induced within one year
 - DEN-induced hepatocarcinogenesis
 - Dramatically accelerated only in young Tg
- Infliximab (chimeric monoclonal antibody) to human TNF- α)
 - TNF α -knock-out mice
 - No increased incidence of spontaneous tumors

Conclusion: Discussion points for up-dating S6 and S1A guidelines

- No need for the evaluation of direct carcinogenicity of biopharmaceuticals regardless of:

 Structural modification of endogenous compounds except for bioconjugates with organic linker

 Duration of administration
- Need for the evaluation of tumor promotive effect of biopharmaceuticals with growth stimulative or immunosuppressive effects
 Rodent 2-year bioassays are generally meaningless
 Case-by-case approach depending upon the characteristics of the compound and its relevant species
 Proliferative lesions in chronic toxicity studies and additional studies may be useful:

 - - nay be useful:

 Stimulated proliferation of target cells in vitro or in vivo (RDS or PCNA immunostain)

 Two-step carcinogenicity models
 Rodent studies using homologous proteins or surrogate antibodies

 - Use of humanized mice