

1

2

3 4

5

6

7

8 9 10

11

12 13

14

15 16

17 18 19

20

21

22

INTERNATIONAL ATOMIC ENERGY AGENCY (IAEA)/WHO GUIDELINES ON GOOD MANUFACTURING PRACTICES FOR RADIOPHARMACEUTICAL PRODUCTS

(July 2019)

DRAFT FOR COMMENTS

Working documents are sent out electronically and they will also be placed on the WHO Medicines website (<u>http://www.who.int/medicines/areas/quality_safety/quality_assurance/guidelines/en/</u>) for comments under the "Current projects" link. If you wish to receive our draft guidelines, please send your e-mail address to jonessi@who.int and your name will be added to our electronic mailing list.

© World Health Organization 2019

All rights reserved.

This draft is intended for a restricted audience only, i.e. the individuals and organizations having received this draft. The draft may not be reviewed, abstracted, quoted, reproduced, transmitted, distributed, translated or adapted, in part or in whole, in any form or by any means outside these individuals and organizations (including the organizations' concerned staff and member organizations) without the permission of the World Health Organization. The draft should not be displayed on any website.

Please send any request for permission to:

The designations employed and the presentation of the material in this draft do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement.

The mention of specific companies or of certain manufacturers' products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters.

All reasonable precautions have been taken by the World Health Organization to verify the information contained in this draft. However, the printed material is being distributed without warranty of any kind, either expressed or implied. The responsibility for the interpretation and use of the material lies with the reader. In no event shall the World Health Organization be liable for damages arising from its use.

37 This draft does not necessarily represent the decisions or the stated policy of the World Health Organization.

39	SCHEDULE FOR THE PROPOSED USE OF DOCUMENT QAS/18.782:
40	
41	INTERNATIONAL ATOMIC ENERGY AGENCY (IAEA)/WHO
42	GUIDELINES ON GOOD MANUFACTURING PRACTICES
43	FOR RADIOPHARMACEUTICAL PRODUCTS
44	

Need for updating of the GMP for radiopharmaceuticals identified by IAEA and its experts.	Early 2018
IAEA consultation meeting on Harmonization of Health Regulations related to the Production of Radiopharmaceuticals, IAEA Headquarters, Vienna, Austria.	5-9 November 2018
Editing by WHO, circulation by mail to the participants of the IAEA meeting (5–9 November 2018) for final feedback and agreement.	December 2018
Circulation to IAEA for final review and editing.	January 2019
Circulate widely for public consultation using the IAEA and the WHO mailing list and public web posting.	January–March 2019
Collect and collate the comments received during the global consultative process in IAEA and WHO using a common format.	April 2019
Revision of working document based on feedback received during a consultation organized by IAEA in 2019.	10-12 July 2019
Re-circulate widely for public consultation, review of comments by IAEA specialists and staff and communication of the final outcome to WHO.	20 September 2019
Present the outcome to the Fifty-fourth WHO Expert Committee on Specifications for Pharmaceutical Preparations.	14-18 October 2019
Present to the IAEA's International Symposium on Trends in Radiopharmaceuticals (ISTR -2019) held at the IAEA headquarters in Vienna, Austria.	28 October – 1 November 2019
Any further action, if needed	
	•

46		INTERNATIONAL ATOMIC ENERGY AGENCY (IAEA)/WHO
47		GUIDELINES ON GOOD MANUFACTURING PRACTICES
48		FOR RADIOPHARMACEUTICAL PRODUCTS
49		
50	1.	Scope of these guidelines
51	2.	Definition of terms
52	3.	Quality management system
53	4.	Qualification and validation
54	5.	Product complaints
55	6.	Product recall
56	7.	Contract production, analysis and other activities
57	8.	Personnel and training
58	9.	Premises
59	10.	Equipment
60	11.	Starting materials
61	12.	Documentation
62	13.	Good practices in production
63	14.	Good practices in quality control
64	15.	Labelling
65		
66	Acro	nyms
67	Ackn	owledgements
68	Refer	ences
69	Addi	tional reading
70		
71	1.	SCOPE OF THESE GUIDELINES
72		
73	These	e guidelines are intended to provide a general overview of the minimum Good Manufacturing
74	Pract	ices (GMP) requirements for radiopharmaceuticals. The main principles of GMP are described
75	in det	ail in the chapters for pharmaceutical products $(1,2)$ as well as those for sterile pharmaceutical

Unless otherwise specified, the GMP requirements for radiopharmaceuticals products (3). 76 described in this guidance should take precedence over the GMP requirements for pharmaceutical 77 products. 78 79 80 The procedures necessary to manufacture and control radiopharmaceutical products are in large part determined by the nature of these products, the methods of manufacture and their intended use. The 81 82 recommendations in these guidelines are applicable to the following scenarios: 83 The production or compounding of radiopharmaceuticals in hospital radiopharmacies, 84 ٠ 85 including diagnostic and therapeutic products. 86 • The production or compounding of radiopharmaceuticals in centralized radiopharmacies. The production or compounding of radiopharmaceuticals in nuclear centres and institutes. 87 ٠ The production of radiopharmaceuticals by industrial manufacturers. 88 ٠ The production of cyclotron-based positron emission tomography (PET) 89 ٠ 90 radiopharmaceuticals. 91 92 The scope of this guidance does not include the following: 93 Radiopharmaceutical dispensing (i.e. the drawing of a patient specific unit dose from a bulk 94 ٠ vial of a radiopharmaceutical). 95 Regulatory authority-approved radiopharmaceutical preparation (i.e. the use of approved 96 ٠ kits and approved generators in order to produce a radiopharmaceutical product as per 97 instructions of the marketing authorization holder). 98 99 • Handling of ready-to-administer radiopharmaceutical products (e.g. receipt, storage, assay, etc.). 100 Production or compounding of non-radioactive compounds, including cold kits. 101 ٠ Production of investigational radiopharmaceuticals. 102 ٠ 103 104 105

- 2. **DEFINITION OF TERMS** 106 107 "As Low As Reasonably Achievable" (ALARA) 108 A set of practices designed to ensure the minimum necessary worker radiation exposure. These 109 practices are based on the principles of time, distance, shielding and awareness. 110 111 112 Dispensing The generation of a patient-specific unit dose which involves the physical withdrawal of the 113 radiopharmaceutical from the bulk single-use or multi-dose vial into a syringe, dilution with 114 115 appropriate diluent as necessary, measurement and labelling the syringe. 116 Good Manufacturing Practices for radiopharmaceuticals 117 A set of practices, using a traceable process, which ensures that radiopharmaceutical products are 118 119 consistently produced and controlled to the quality standards appropriate for their intended use and designed to consistently yield the radiopharmaceutical product. Good Manufacturing Practices 120 121 fall under the umbrella of the overall Quality Management System. 122 123 Manufacturing or production Within the scope of this guidance, these terms refer to all the operations performed leading 124 up to the finished radiopharmaceutical product, including the purchase of starting materials, 125 production, quality control (QC), release and storage of radiopharmaceuticals. 126 127 Preparation or kit-reconstitution 128 129 Within the scope of this guidance, preparation or kit reconstitution refers to all the procedures carried out as per instructions from marketing authorization holder which involves addition of 130 radionuclide solution approved by regulatory authorities to an approved cold kit. 131 132 Primary packaging 133 Any packaging material that comes into direct contact with the radiopharmaceutical finished 134
 - 135 product (i.e. an immediate container, such as a vial or a syringe).

136	Quality control
137	A set of analytical tests designed to demonstrate compliance of the quality of starting materials,
138	intermediates and radiopharmaceutical final products with pre-determined quality acceptance
139	specifications.
140	
141	Quality Management System
142	An appropriate system encompassing the organizational structure, procedures, processes and
143	resources and systematic actions necessary to ensure adequate confidence that the
144	radiopharmaceutical product or service will satisfy the given requirements for quality.
145	
146	Radiopharmaceutical compounding
147	This term refers to producing radiopharmaceuticals with no marketing authorization but pursuant
148	to a physician's order for a specific patient or patients. In various regions of the world, this practice
149	may also be referred to as "in-house preparation", "in-house-manufacturing" or "hospital
150	preparation."
151	
152	Radiopharmaceutical product
153	Any pharmaceutical product which, when ready for use, contains one or more radionuclides
154	(radioactive isotopes) included for medicinal purposes.
155	
156	Secondary packaging
157	The shielded container housing the primary packaging.
158	
159	3. QUALITY MANAGEMENT SYSTEM
160	
161	3.1 One of the main goals of any manufacturing process is to consistently yield a product of
162	intended quality. The Quality Management System (QMS) is an appropriate system,
163	encompassing the organizational structure, procedures, processes, resources and
164	systematic actions necessary to ensure adequate confidence that the radiopharmaceutical
165	product or service will satisfy the given requirements for quality.

3.2 QMS is part of the manufacturer's overall commitment to establish manufacturing process
controls that comply with applicable regulations and consistently yield a product of
acceptable quality. These manufacturing process controls are also known as Good
Manufacturing Practices (GMP).

170

3.3 While the terms QMS and GMP also apply to the manufacture of "traditional"
pharmaceuticals, the actual requirements of controls for radiopharmaceutical
manufacturing are quite different from the requirements for "traditional" pharmaceutical
manufacturing and should be based on a well-defined and appropriate risk assessment.

175

3.4 Risk assessment and risk management are the key concepts applied when establishing
manufacturing process controls intended to minimize the risk of unnecessary patient harm,
resultant from the suboptimal quality of the product. Risk assessment involves a thorough
evaluation and identification of all possible risks associated with the manufacturing
process and risk management involves implementing measures to minimize those risks.

181

Risk management measures should be based on consideration of the complexity of the
intended process. Because radiopharmaceuticals are significantly different from
"traditional" medicines, both in their characteristics and the production process, the GMP
requirements applicable to the manufacture of "traditional" pharmaceuticals cannot be
applied in their entirety to the manufacture of all classes of radiopharmaceuticals.

187

188 3.6 Radiopharmaceutical specific characteristics generally include the following:

189

simple distribution chain, with direct delivery of the finished product from the
manufacturer to the nuclear medicine department;

- small batch size;
- limited shelf life of minutes to several days;
- quality control (QC) sample representing the entire batch;

- diagnostic radiopharmaceuticals often possess low potential 195 to exert • 196 pharmacological or toxic effects due to the micro-dose levels administered. Radiopharmaceuticals are often administered prior to completion of all OC testing. 197 Tests such as sterility, endotoxin content determination and radionuclidic purity, may 198 need to be performed post-release. Hence, the importance of the application of GMP 199 is essential to minimize the possible risks to the quality that may not be identified 200 through OC pre-release testing. Oualification of instruments/equipment and 201 202 validation of methods/processes are essential to prove that the critical aspects of their 203 operation are controlled. 204 3.7 The unique nature of these agents requires specialized risk management that is tailored to 205 the actual production process, the nature of the radiopharmaceutical itself, the level of risk 206 associated and the clinical indication. As always, the radioactive nature of these agents 207 requires compliance with "as low as reasonably achievable (ALARA) principles" (4,5). 208 The recommendations provided in this guidance are based on such reasoning. 209 210 211 4. **QUALIFICATION AND VALIDATION** 212 213 4.1 Qualification of instruments/equipment and validation of methods/procedures are essential to prove that the critical aspects of their operation are controlled. 214 215 4.2 Validation and qualification activities should be planned in an orderly manner and documented. 216 217 Qualification of premises, supporting utilities, production and QC equipment should 4.3 218 demonstrate that they have been designed (if applicable), installed, operated and perform 219 in accordance with the requirements of GMP and are fit-for-purpose. 220 221 4.4 The planning of qualification and validation activities should consider the complexity and 222 critical aspects of the intended radiopharmaceutical production. A schedule of planned 223
- 224 preventive maintenance should be established for instruments/equipment as well as regular

225		verifications and/or calibrations as appropriate. These commitments must be documented
226		in a written and approved standard operating procedure (SOP).
227		
228	4.5	Process validation should be carried out after all other qualification and validation have
229		been successfully completed.
230		
231	4.6	Process validation should include an adequate number of productions of the intended
232		radiopharmaceutical(s), prepared following the same procedures, covering the intended
233		batch size range and with the same production, quality specifications and acceptance
234		criteria as of typical intended routine batches. The number of batches and the batch size
235		range should be pre-determined as part of a risk assessment performed prior to process
236		validation.
237		
238	4.7	Cleaning validation should be especially focused on critical production areas, such as
239		working surfaces, and in general surfaces which come into direct contact with the operators
240		or with starting materials, intermediates and finished products.
241		
242	4.8	Analytical methods should be validated in case they are not described in any recognized
243		source (e.g. a pharmacopoeia). Compendial analytical methods, already described in a
244		recognized source, are not required to be validated; however, method suitability under
245		actual conditions of use should be performed and documented.
246		
247	4.9	General principles on validation of analytical methods may be found following suitable
248		guidelines (6,7); however, the unique nature of radioactivity should be considered, and
249	,	specific adaptations should be made, if justified.
250		
251	4.10	Re-validation of critical processes (e.g. media fill studies) should be performed on a
252		periodic basis. These commitments must be documented in a written and approved SOP.
253		Re-validation of any process or requalification of equipment may be warranted under

254		certain circumstances (e.g. in case of significant changes and/or of deviations which may
255		affect the quality of the product).
256		
257	4.11	Validation/qualification activities, including clearly defined responsibilities and the
258		resultant data, should be documented and archived.
259		
260	4.12	Processes and procedures should ultimately be established based on the results of the
261		validation performed.
262		
263	5.	PRODUCT COMPLAINTS
264		
265	5.1	There should be a written SOP for handling and investigating product complaints.
266		
267	5.2	The SOP should also describe the actions to be taken in case of complaints.
268		
269	6.	PRODUCT RECALL
270		
271	6.1	There should be a SOP for product recall.
272		
273	6.2	Since the return of radioactive products is generally not practical, the main purpose of
274		recall procedures for radiopharmaceutical products should be to prevent their use rather
275		than an actual return. If necessary, the return of radioactive products should be carried out
276		in accordance with international and national transport regulations (8).
277		
278	7.	CONTRACT PRODUCTION, ANALYSIS AND OTHER ACTIVITIES
279	/	
280	7.1	Sub-contractors should be qualified as per internal written approved procedure. The
281		respective responsibilities of each party must be clearly defined.
282		
283		
200		

284

8. **PERSONNEL AND TRAINING**

285

- 8.1 The manufacturing establishment should have adequate personnel to carry out the intended
 operations. The responsibility placed on any one of the personnel should not be so
 extensive as to present an increased risk to the quality. The manufacturing establishment
 and its personnel should be under the supervision of a responsible person(s) who possesses
 qualifications and practical experience or as required by national legislation.
- 8.2 Supporting personnel should have the necessary training and experience appropriate totheir function.
- 294

291

- 8.3 Personnel should be trained on SOPs related to radiopharmaceutical manufacture,
 approved by the responsible person.
- 297

302

- 8.4 To ensure the safe manufacture of radiopharmaceuticals, personnel should also be trained
 in GMP, the safe handling of radioactive materials and radiation safety procedures.
 Personnel should take periodic courses and receive training to keep abreast of the latest
 developments in their fields.
- 303 8.5 Training should be planned and documented, and the training records should be retained
 304 in a personnel file
- 306 8.6 All personnel handling radioactivity should be monitored for possible contamination
 307 and/or irradiation exposure.
- 308

- 8.7 Personnel working in clean areas should maintain good personal hygiene. Personnel are
 required to report to the immediate supervisor any condition that may potentially adversely
 affect the product.
- 312
- 313

Working document QAS/18.782/Rev.1 page 12

314 9. **PREMISES**

315

As a general principle, facilities must be located, designed, constructed, adapted and
maintained to suit the operations to be carried out within them. Laboratories for the
handling of radioactive materials should be designed to take into consideration aspects of
radiation protection and ALARA compliance, in addition to cleanliness and controls to
minimize microbial contamination.

- 321
- 322 9.2 Lighting, heating, ventilation and air-conditioning systems should be designed to maintain
 an appropriate temperature and relative humidity in order to ensure the proper equipment
 function, material storage conditions and safety and comfort of personnel.
- 325

9.3 Facilities should be maintained in a good state of operation. Special precautions should be
exercised to ensure that facility repair or maintenance operations do not compromise
product quality. Premises should provide adequate space for the operations to be carried
out, allowing an efficient workflow and effective communication and supervision.
Facilities should be designed to have controls to prevent the risk of entry of insects, pests
and vermin.

- 332
- Interior surfaces (walls, floors and ceilings) should be smooth, impervious and free from
 cracks; they should not shed matter and should permit easy cleaning and decontamination.
- 9.5 Drains should be avoided wherever possible and, unless essential, should be excluded from
 clean areas.
- 338

335

339 9.6 Sinks should be excluded from clean areas.

340

9.7 Pipework, valves and vent filters should be properly designed to facilitate cleaning anddecontamination.

344 9.8 Technical area (e.g. rooms to access the rear of hot cells) access points should be
345 configured in a way to minimize the entrance of the maintenance/technical personnel to
346 the production/clean areas.

347

348 9.9 The pressure regime and ventilation system for the different facility areas should be
349 carefully established to both minimize the risk of product contamination and to protect the
350 personnel from unnecessary radiation exposure. The pressure differentials should be
351 monitored.

352

9.10 Radioactive gas emissions should be effectively monitored, including alarms, in order to
minimize the risk of unnecessary radiation exposure to personnel as well as to the
surrounding environment.

356

9.11 Radioactive gas exhausts should be removed via a separate air handling unit through
appropriate filters that are regularly checked for performance.

359

360 9.12 All operations of radioactivity handling, storage and waste disposal should be performed361 in compliance with national regulations and guidance.

362

363 9.13 A dedicated area and equipment should be used for the manufacture of any
364 radiopharmaceutical product involving human blood or plasma.

365

366 9.14 A manufacturer's QC laboratory should be in a separate dedicated area.

367

368 10. **EQUIPMENT**

369

Equipment used should be qualified for the intended purpose through appropriate design,
 specifications, installation, calibration, operation, and maintenance. Critical factors,
 including minimizing the risk of product contamination, minimizing the risk of staff
 radiation exposure and optimised ergonomics, should be considered during equipment

374		design (design qualification) in order to facilitate their operation, maintenance and
375		cleaning. Subsequently, before use, equipment should be qualified for the intended
376		purpose by performing installation qualification, operational qualification and
377		performance qualification, records of which are to be retained (9).
378		
379	10.2	Equipment used for radiopharmaceutical manufacture and QC should be periodically
380		calibrated and maintained.
381		
382	10.3	Equipment maintenance, qualification, and calibration operations should be recorded and
383		archived in proper log-books.
384		
385	10.4	Equipment controlling software may be considered as part of the equipment and, therefore,
386		may be included in the process of equipment qualification.
387		
388	10.5	SOP's should be established for the operation, calibration, and planned preventative
389		maintenance (PPM) of the equipment
390		
391	10.6	The dose calibrator (also known as activity meter) should be qualified using suitable
392		reference standards. If such a reference standard recognized by a national authority is not
393		available, dose calibrator manufacturer recommendations or published literature may be
394		used when deciding upon the appropriate dial setting.
395		
396	11.	STARTING MATERIALS
397		
398	11.1	Starting materials of appropriate quality should be used for radiopharmaceutical
399	/	production. Written material acceptance SOPs must be established for starting materials
400		to be subsequently used in radiopharmaceutical production.
401		

402	11.2	Specifications for every starting material must be established. Examples of such
403		specifications may include identity, purity or certification of origin (if applicable) and any
404		other parameter or characteristic that makes the material suitable for the intended use.
405		
406	11.3	Starting materials could be accepted by either performing in-house testing or a review of
407		the Certificate of Analysis (CoA) supplied by the reliable material manufacturer to confirm
408		compliance with the internal acceptance specification.
409		
410	11.4	Materials should be segregated into three separate categories: (1) accepted materials, (2)
411		quarantined material, and (3) rejected materials and labelled accordingly.
412		
413	11.5	Rejected materials must be securely stored in an area separate from the rest of the materials.
414		
415	11.6	Waste materials should be disposed of in accordance with the national requirements.
416		
417	12.	DOCUMENTATION
418		
419	12.1	Good documentation practices should be used.
420		
421	12.2	Documents should ensure the traceability of radiopharmaceutical production (including the
422		processes and the product).
423	12.3	The processing records of regular production batches must provide a clear and complete
424		account of the manufacturing history of each batch of a radiopharmaceutical, showing that
425		it has been manufactured, tested, dispensed into containers and delivered in accordance
426		with the applicable SOPs.
427		
428	12.4	A controlled system of written SOPs must be created to cover the requirements for major
429		aspects of radiopharmaceutical manufacturing. The SOPs should be approved, signed and
430		dated by the appropriate responsible person(s). No approved SOP document should be

431		changed without an appropriate review, evaluation and approval by the responsible
432		person(s). The SOPs should be reviewed periodically to ensure applicability.
433		
434	12.5	Documentation should be retained for a period appropriate to the nature of the document
435		content.
436		
437	13.	GOOD PRACTICES IN PRODUCTION
438		
439	13.1	Access to restricted areas should be by authorized and trained personnel only.
440		
441	13.2	Only the minimum number of personnel required should be present in clean areas.
442		
443	13.3	Processes should be designed to minimize the risk of contamination, cross-contaminations
444		and mix-ups. The following measures may be adopted to minimize these risks:
445		
446		(a) processing and filling in segregated areas;
447		(b) avoiding the manufacture of different products at the same time, in the same
448		dedicated space or by the same personnel;
449		(c) performing manufacturing area decontamination and visual pre-checks;
450		(d) using manufacturing "closed systems", whenever possible.
451		
452	13.4	The critical aseptic operations, such as final product vial assembly, vial filling or sterility
453		testing, should be carried out in areas under high efficiency particulate air (HEPA) filtered
454		laminar air flow (10).
455		
456	13.5	Both raw materials and final radiopharmaceutical products should be stored under
457		appropriate controlled conditions.
458		
459	13.6	An evaluation program aimed to define the stability of the finished products should be
460		established.

461	13.7	The expiration dates and times for radiopharmaceuticals should be based on the results of
462		an adequate number of stability studies.
463		
464	14.	GOOD PRACTICES IN QUALITY CONTROL
465		
466	14.1	Radiopharmaceuticals final product acceptance criteria, including criteria for release,
467		should be established and documented in a written SOP.
468		
469	14.2	Sampling procedures should consider the nature and the characteristics of the material
470		being sampled (e.g. a small batch size and/or its radioactive content) to make sure that the
471		samples are representative of the batch of radiopharmaceutical.
472		
473	14.3	The QC procedures should be described in written SOPs.
474		
475	14.4	QC samples should be prepared, handled and stored in a way to ensure the adequate
476		identification and segregation of the test samples to avoid mix-ups and cross-
477		contamination.
478		
479	14.5	Radiopharmaceutical final products failing to meet the acceptance criteria should be
480		rejected and segregated. Such events should be investigated; and the investigation
481		outcome and proposed actions should be documented.
482		
483	14.6	The release of a batch should be performed by a responsible person.
484		
485	14.7	In the manufacturer setting, batch release should be carried out by the responsible person
486		or Persons separate from the person or persons carrying out production and QC.
487		
488	15.	LABELLING
489		
490	15.1	Radiopharmaceutical final products should be clearly identified by labels.

491	15.2	Wheney	ver possible, a portion of the primary packaging container should be left uncovered
492		to allow	for the inspection of contents.
493			
494	15.3	The con	tent of the labels for radiopharmaceutical products must comply with the relevant
495		national	l regulations and international agreements.
496			
497	15.4	In the a	absence of regulatory authority requirements, the following information may be
498		listed or	n the primary packaging container label:
499			
500		(a)	the name of the product and batch number;
501		(b)	the name of the manufacturer;
502		(c)	the amount of activity in SI units;
503		(d)	for liquid radiopharmaceuticals, the total activity or the
504			radioactive concentration per millilitre at calibration date and, if necessary, time,
505			and the volume of liquid;
506		(e)	for capsules, the radioactivity of each capsule at calibration date and, if necessary,
507			time, and the number of capsules in the container;
508		(f)	where relevant, the international symbol for radioactivity;
509		(g)	expiration date and time;
510		(h)	cautionary statements, e.g. "Caution: radioactive material".
511			
512		Please r	note that reporting information about activity on a primary label may not always be
513		possible	e due to radiation protection reasons; in this case, they may be reported on the
514		seconda	ry packaging label only.
515			
516	15.5	In the a	absence of regulatory authority requirements, the following information may be
517		listed or	n the secondary packaging container label, in addition to any information listed on
518		the prin	nary packaging:
519			
520		(a)	the qualitative and quantitative composition;

pient information;

he route of administration;

523 (d) any special storage instructions; and

524 (e) the address of the manufacturer.

- 525
- 526 Acronyms
- 527

528	ALARA	"As Low As Reasonably Achievable"
529	CoA	Certificate of Analysis
530	GMP	good manufacturing practices
531	HEPA	high efficiency particulate air
532	PET	positron emission tomography
533	PPM	planned preventative maintenance
534	QC	quality control
535	QMS	quality management system
536	SOP	standard operating procedure
537		
538	Acknowled	gements
539		
540	These guideling	nes were prepared by the following experts:

541

Mr P.O. Bremer (Norway), Mr C. Fallais (Belgium), Mr K.B. Park (Republic of Korea), Ms S.
Vasanavathana (Thailand), Mr P.V. Kulkarni (India), Dr S. Kopp (WHO), Mr D.V.S. Narasimhan
(International Atomic Energy Agency) and Mr H. Vera Ruiz (International Atomic Energy
Agency).

546

547

- 549 These guidelines were updated by the following experts:
- 550
- 551 Mr S.K. Lyashchenko (United States of America), Mr S. Todde (Italy), Ms Y.M Chevalme (France),
- 552 Dr S. Kopp (WHO), Mr A. Ross (Canada), Ms. A. Korde (International Atomic Energy Agency)
- and Mr J.A. Osso Junior (International Atomic Energy Agency).
- 554
- 555 **References**
- 556
- Good Manufacturing Practices for Pharmaceutical Products. In: WHO Expert Committee
 on Specifications for Pharmaceutical Preparations. Thirty-second report. Geneva, World
 Health Organization, 2014, Annex 2 (WHO Technical Report Series, No. 986).
- 2. Quality Assurance of Pharmaceuticals. A Compendium of Guidelines and Related
 Materials. Good Manufacturing Practices and Inspection. Geneva, World Health
 Organization, 2018.
- 564

568

560

Good Manufacturing Practices for Sterile Pharmaceutical Products. In: WHO Expert Committee on Specifications for Pharmaceutical Preparations. Thirty-sixth report. Geneva, World Health Organization, 2011, Annex 6 (WHO Technical Report Series, No. 961).

- Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards.
 Vienna. Jointly Sponsored by EC, FAO, IAEA, ILO, OECD/NEA, PAHO, UNEP and
 WHO. 2014 (Safety Series Requirements, No. GSR Part 3).
- 572
- 5. *Radiation Protection and Safety in Medicinal Uses of Ionizing Radiation*. Vienna. Jointly
 574 Sponsored by IAEA, ILO, PAHO, and WHO. 2018 (Specific Safety Guide No.SSG-46).
- 575
- 576 6. *Good Manufacturing Practices: Validation Analytical Method Validation* (WHO
 577 Technical Report Series, No. 1019, Annex 3, Appendix 4, 2019).
- 578

579	7.	ICH Harmonised Tripartite Guideline Validation of Analytical Procedures: Text and		
580		Methodology, Step 4 of the ICH Process, November 2005		
581				
582	8.	Regulations for the Safe Transport of Radioactive Material. Vienna, International Atomic		
583		Energy Agency, 2009 (IAEA Safety Requirements Safety Standards Series, No. TS-R-1,		
584		Revised).		
585				
586	9.	Good Manufacturing Practices: Validation (WHO Technical Report Series, No. 1019,		
587		Annex 3, 2019).		
588				
589	10.	EN ISO 14644.		
590				
591	1 Additional Reading			
592				
593	11.	Guide for Elaboration of Monographs on Radiopharmaceutical Preparations, EDQM,		
594		2018.		
595				
596	12.	Validation of Analytical Procedures, PA/PH/OMCL (13) 82 2R- OMCL Network/Council		
597		of Europe, 2014.		
598				
599	12.	Quality Control in the Production of Radiopharmaceuticals. Details: IAEA-TECDOC-		
600		1856; (ISBN:978-92-0-107918-3); 2018.		
601		https://www-pub.iaea.org/MTCD/Publications/PDF/TE-1856web.pdf		
602				
603	13.	<i>Yttrium-90 and Rhenium-188 Radiopharmaceuticals for Radionuclide Therapy.</i> Details:		
604		STI/PUB/1662; (ISBN:978-92-0-103814-2); 2015.		
605		https://www-pub.iaea.org/MTCD/Publications/PDF/Pub1662web-89688003.pdf		
606				
607	14.	Good Practice for Introducing Radiopharmaceuticals for Clinical Use. Details: IAEA-		
608		TECDOC-1782; (ISBN:978-92-0-111215-6); 2015.		
609		https://www-pub.iaea.org/MTCD/Publications/PDF/TE-1782_web.pdf		

610	15.	Cyclotron Produced Radionuclides: Guidance on Facility Design and Production of
611		Fluorodeoxyglucose (FDG). Details: STI/PUB/1515; (ISBN:978-92-0-117310-2); 2012.
612		https://www-pub.iaea.org/MTCD/Publications/PDF/Pub1515_Web.pdf
613		
614	16.	Technetium-99m Radiopharmaceuticals: Status and Trends. Details: STI/PUB/1405;
615		(ISBN:978-92-0-103509-7); 2010.
616		https://www-pub.iaea.org/MTCD/Publications/PDF/Pub1405_web.pdf
617		
618		
619		***