1 ヘパリンナトリウム

2 **基原の項を次のように改める**.

- 3 本品は、健康な食用ブタの腸粘膜から得たD グルコサミ
- 4 ン及びウロン酸(L イズロン酸又はD グルクロン酸)の二糖
- 5 単位からなる硫酸化グリコサミノグリカンのナトリウム塩で
- 6 ある.
- 7 本品は,血液の凝固を遅延する作用を有する.
- 8 本品は定量するとき,換算した乾燥物に対し,1 mg中180
- 9 ヘパリン単位以上を含む.

10 発熱性物質の項の次に次を加える.

- 11 抗第Xa因子活性・抗第 a因子活性比 次の方法により測定し
- 12 た抗第Xa因子活性を,定量法で得た抗第 a因子活性で除し,
- 13 抗第Xa因子活性・抗第 a因子活性比を求めるとき,0.9~
- 14 1.1である.
- 15 抗第Xa因子活性測定法
- 16 () 基質液 N-ベンゾイル L イソロイシル L グル
- 17 $9 \ge N(-OR) 7$ $9 \ge N(-DR) 7$ $9 \ge N(-DR) 7$ $9 \ge N(-DR) 1$ $9 \le N(-DR) 1$ $9 \le N(-DR) 1$
- 18 **ニリド塩酸塩25 mgを水33.3 mLに溶かす**.
- 19 () アンチトロンビン液 定量法を準用する.
- 20 () 第Xa因子液 第Xa因子試液1200 μLに緩衝液1200 μL
- 21 を加える.
- 22 () 緩衝液 定量法を準用する.
- 23 () 反応停止液 定量法を準用する.
- 24 () ヘパリン標準液 定量法を準用する.
- 25 () ヘパリン試料液 定量法を準用する.
- 26 () 操作法 各濃度のヘパリン標準液をそれぞれ2本,各
- 27 濃度のヘパリン試料液をそれぞれ2本及び空試験液として緩
- 28 衝液を5本の1.5 mLチューブに, 50 μLずつ分注する. 各溶
- 29 液が分注されたチューブ計21本,アンチトロンビン液,第
- 30 Xa因子液及び基質液を37 で一斉に加温し,加温開始2分
- 多り 後から、空試験液、 S_1 、 S_2 、 S_3 、 S_4 、空試験液、 T_1 、 T_2 、 T_3 、
- 32 T₄, 空試験液, T₁, T₂, T₃, T₄, 空試験液, S₁, S₂, S₃, S₄,
- 33 空試験液の順に以下のように操作する.各溶液が分注された
- 54 チューブにアンチトロンビン液 $50~\mu L$ を加え,よく混和し,
- 35 37 で正確に4分間加温する.これに第Xa因子液 $100~\mu L$ を
- 36 加え,よく混和し,37 で正確に12分間加温した後,基質
- 37 液 $100~\mu$ Lを加え,よく混和する.37 で正確に4分間加温
- 38 した後,反応停止液50 µLを加え,直ちに混和する.別に反
- 39 応停止液50 μLに基質液100 μL, 第Xa因子液100 μL, アン
- 40 チトロンビン液 $50~\mu L$ 及び緩衝液 $50~\mu L$ を加えて混和する.
- 41 この液を対照として , 分光光度計により , 波長405 nmにお
- 42 ける各溶液の吸光度を測定する.空試験液の測定値の相対標
- 43 準偏差が10%以下であることを確認する.
- 44 () 計算法 吸光度の対数値をy, ヘパリン標準液濃度を
- 45 x_s , ヘパリン試料液濃度を x_t として,回帰式 $y = I_c + Ax_s +$
- BX_t を導くとき,効力比R = B/Aである.
- 47 I_c: 共通切片
- 48 A:標準溶液の回帰直線の傾き
- 49 B: 試料溶液の回帰直線の傾き

- 50 次式により本品1 mg中の抗第Xa因子活性を計算する.
- 51 本品1 mg中の抗第Xa因子活性 = 100 x R x V/M
- 52 V: 本品を水に溶かし,1 mL中に約100単位を含む液を製
- 53 したときの全容量(mL)

M: 本品の秤取量 (mg)

- 55 ただし,回帰式 $y = I'_c + A'_{X_s} + B'_{X_t} + D$ を導くとき,空
- 56 試験液の測定結果と2直線から想定される切片の差を示す定
 - 数項Dの90 %信頼区間が 0.2~0.2の範囲内にない場合は ,
- 58 空試験液の測定結果を除外して解析する.
- 59 試験成立条件は定量法を準用する.条件が満たされないと
- 60 き,得られた力価を仮力価として効力比が約1となるように
- 61 希釈倍数を見直して,再度試験を行う.

定量法の項を次のように改める.

63 定量法

54

57

62

79

80

84

85

86

- 64 () 基質液 H-D-フェニルアラニル-L-ピペリジル-65 L-アルギニル-p-ニトロアニリド二塩酸塩25 mgを水32.0
- 66 mLに溶かす.
- 67 () アンチトロンビン液 ヒト由来アンチトロンビンを水68 に溶かし,1 mL中に1単位を含む液を調製する.この液150
- 69 μLに緩衝液2250 μLを加える.
- 70 () 第 a因子液 第 a因子を緩衝液に溶かし,1 mL中 71 に20単位を含む液を調製する.この液150 μLに緩衝液150
- 72 μL及び水300 μLを加える.
- 73 () 緩衝液 2-アミノ-2-ヒドロキシメチル-1,3-プ
- 74 ロパンジオール6.1 g , 塩化ナトリウム10.2 g , エチレンジア
 75 ミン四酢酸二水素ナトリウム二水和物2.8 g , ポリエチレン
- 76 グリコール6000 1.0gを水800 mLに溶かし,1 mol/L塩酸試
- 77 液を加えてpH 8.4に調整した後,水を加えて $1000~\mathrm{mL}$ とす78 る.
 - () 反応停止液 酢酸(100) 2 mLに水を加え,10 mLとする.
- 81 () ヘパリン標準液 ヘパリンナトリウム標準品を水に溶 82 かし,1 mL中に100単位を含む液を調製し,標準原液とす 83 る.標準原液を正確に緩衝液で希釈して1 mL中に0.1単位を
 - 含む液を調製し,標準溶液とする.次の表に従い,緩衝液に 煙準溶液を加え ヘパリン煙準液の ヘパリン煙準液の ヘパリン煙準液の ヘ
 - 標準溶液を加え,ヘパリン標準液 S_1 ,ヘパリン標準液 S_2 ,ヘパリン標準液 S_3 及びヘパリン標準液 S_4 を調製する.

ヘパリン標準液		/巫任:: 左	抽准流流
No .	ヘパリン濃度	緩衝液	標準溶液
	(単位/mL)	(µL)	(µL)
S_1	0.005	950	50
S_2	0.010	900	100
S_3	0.015	850	150
S_4	0.020	800	200

- 87 () ヘパリン試料液 本品の適量を精密に量り,水に溶か 88 し,1 mL中に約100単位を含む液を調製し,試料原液とす 89 る.試料原液を正確に緩衝液で希釈して1 mL中に0.1単位を
- 90 含む液を調製し,試料溶液とする.次の表に従い,緩衝液に
- 51 試料溶液を加え, 1 、

92

ヘパリン試料液		/巫任:: 左	試料
No .	ヘパリン濃度	緩衝液 (_u L)	溶液
	(単位/mL)	(μL)	(µL)
T_1	0.005	950	50
T_2	0.010	900	100
T_3	0.015	850	150
T_4	0.020	800	200

93 () 操作法 各濃度のヘパリン標準液をそれぞれ2本,各 濃度のヘパリン試料液をそれぞれ2本及び空試験液として緩 94 95 衝液を5本の1.5 mLチューブに,50 μLずつ分注する.各溶 液が分注されたチューブ計21本,アンチトロンビン液,第 96 a因子液及び基質液を37 で一斉に加温し,加温開始2分 97 後から,空試験液, S_1 , S_2 , S_3 , S_4 ,空試験液, T_1 , T_2 , T_3 , 98 T_4 , 空試験液, T_1 , T_2 , T_3 , T_4 , 空試験液, S_1 , S_2 , S_3 , S_4 , 147 H-D-フェニルアラニル-L-ピペリジル-L-アルギニル-99 100 空試験液の順に以下のように操作する、各溶液が分注された チューブにアンチトロンビン液 $100~\mu L$ を加え,よく混和し, $_{149}$ 101 102 37 で正確に4分間加温する.これに第 a因子液25 μLを 加え,よく混和し,37 で正確に4分間加温した後,基質液 103 104 50 μLを加え,よく混和する.37 で正確に4分間加温した 105 後,反応停止液50 µLを加え,直ちに混和する.別に反応停 106 止液50 μLに基質液50 μL, 第 a因子液25 μL, アンチトロ 107 ンビン液100 µL及び緩衝液50 µLを加えて混和する.この液 108 を対照として,分光光度計により,波長405 nmにおける溶 液の吸光度を測定する.空試験液の測定値の相対標準偏差が 109 10%以下であることを確認する. 110

- 111 (ix) 計算法 吸光度の対数値をy, ヘパリン標準液濃度をxs,
- ヘパリン試料液濃度を x_t として,回帰式 $y = I_c + Ax_s + Bx_t$ 112
- 113 を導くとき,効力比R = B/Aである.
- I_{c} : 共通切片 114
- A:標準溶液の回帰直線の傾き 115
- B: 試料溶液の回帰直線の傾き 116
- 117 次式により本品1 mg中の抗第 a因子活性を計算する.
- 本品1 mg中の抗第 a因子活性 = $100 \times R \times V/M$ 118
- V: 本品を水に溶かし,1 mL中に約100単位を含む液を製 119
- したときの全容量(mL) 120
- M: 本品の秤取量 (mg) 121
- ただし,回帰式 $y = I'_c + A'_{X_s} + B'_{X_t} + D$ を導くとき,空試 122
- 験液の測定結果と2直線から想定される切片の差を示す定数 123
- 項Dの90%信頼区間が-0.2~0.2の範囲内にない場合は,空 124
- 試験液の測定結果を除外して解析する. 125
- 試験成立条件は,下記(1)~(3)の3項目とする. 126
- 127 (1)2直線から想定される切片の一致に関する判定
- 128 空試験液を除く標準溶液及び試料溶液のデータから、回帰
- 129 式 $y = I_s + A''_{X_s} + B''_{X_t} + I_{ts}$ を導くとき , 定数項 I_{ts} の
- 90%信頼区間が 0.2~0.2の範囲内である. 130
- Is:標準溶液の回帰直線の切片 131
- Its: 2直線から想定される切片の差 132
- (2)直線性に関する判定 133

標準溶液及び試料溶液のデータから,回帰式 $y = I_c +$ $A'''_{X_s} + B'''_{X_t} + Q_{sX_s^2} + Q_{tX_t^2}$ を導くとき, 2次係数 Q_s 及び Q_t の90%信頼区間が-1000~1000の範囲内である.

137 Qs:標準溶液の回帰曲線の2次係数

Q: 試料溶液の回帰曲線の2次係数

139 (3)相対力価の算出結果が本試験法について事前にバリデ

140 ーションされた範囲内であることの判定

算出された効力比が0.8以上1.2以下である.

これらの条件が満たされないとき、得られた力価を仮力価 として効力比が約1となるように希釈倍数を見直して,再度 試験を行う.

145

134

135 136

138

141

142

143

144

153

154

155

156

158

159

160

161

9.41 試薬・試液の項に次を追加する.

p-ニトロアニリドニ塩酸塩 白色の粉末で,水に溶けにく い.

150 吸光度 2.24 $E_{\text{lcm}}^{\text{1}\%}$ (316 nm): 192~214 (10 mg,水, 151 300 mL).

152 ヒト由来アンチトロンビン 健康なヒトの血漿から得たセリン プロテアーゼ阻害因子で,活性化血液凝固第 因子(トロ ンビン)及び活性化血液凝固第X因子の活性を阻害するタ ンパク質である. タンパク質1 mg当たり6国際単位以上を

157 第 a因子 ヒト血漿から精製された第 a因子を凍結乾燥し たもので,白色~微黄色の粉末である.タンパク質1 mg当 たり2000国際単位以上を含む.