Therapeutic Cancer Vaccines

- **Goal for all therapeutic cancer vaccines:**
 - To enhance the natural immune response so that it becomes an effective therapy

- **Approaches being investigated in clinical studies:**
 - Whole tumor cells
 - Tumor cell lysates
 - Proteins
 - Peptides
 - DNA
Potency Assays for Cell-based Therapeutic Cancer Vaccines

- **Challenges**
 - Develop a potency assay before the results of Phase 3 are known
 - Antigenic correlates of efficacy are tentative before Phase 3 results are known, and the correlates may not be known even after Phase 3

 - A framework for measuring potency during clinical development can be based on experience with other biological products, especially infectious disease vaccines
Definitions of Potency

- **ICH**

 “the measure of **biological activity**, using a suitably **quantitative** biological assay, based on the attribute of the product that is **linked to the relevant biological properties**.”

- **WHO**

 - Adopted ICH in November 2003
 - WHO Comment: “Potency tests measure **biological activity** of a vaccine, but do **not necessarily reflect the mechanism of protection** in human.”
Potency Assays

- Purposes of a potency assay
 - Ensure that a given batch has at least a pre-defined minimum level of potential biological activity that will give an expected result (e.g. an antibody response)
 - Demonstrate batch-to-batch consistency by a method that in some way depends on and reflects biological activity.
 - Measurement of potential biological activity is usually direct, but it may be indirect
 - *Ideally*, the measured biological activity correlates with efficacy
Potency Assays for Infectious Disease Vaccines

- Ideally, a potency assay applies to all products in a given class:
 - Diphtheria toxoids
 - Live poliovirus vaccines
- 1 or more Ags are required for biological activity by inducing a clinically beneficial immune response (Ab, CMI, or both)
- If IR correlates with efficacy, then
 - *In vitro* tests can be use to measure antigen content
 - *In vivo* tests have been used to measure
 - Ab production
 - Protection against challenge
Potency Assays for Live Vaccines Against Infectious Diseases

- Potency usually is based on titration of the infective dose in cell cultures and usually includes a reference preparation linked to a WHO International Standard.
- The amount of infectious units required is based on the results of clinical trials where dose and IR is correlated with efficacy.
- Minimum level of infectious units is established.
- Upper limit may be indicated in some cases.
- Acceptability range is broad: +/- 0.5 log_{10}.
Potency Assays for Killed Vaccines Against Infectious Diseases

- Potency usually is based on the quantitative measure of the content of 1 or more selected Ags
 - D antigen for inactivated poliovirus vaccines
 - HA for inactivated influenza vaccines
- Acceptability range is broad: +/- 0.5 \log_{10}
- Direct link between IR and efficacy is not always possible
 - Whole cell pertussis
 - Anthrax
Potency Assays for Non-Vaccine Therapeutic Biological Products

- **Carticel**
 autologous cultured chondrocytes approved for the repair of damaged cartilage
 - Cell viability >80%
 - Potency: number of live cells

- **Interferon-alpha**
 approved to treat Stage III melanoma and other cancers
 - Potency: antiviral activity (not directly related to therapeutic activity)
 - Demonstrates biological activity
 - Can be used to assess manufacturing consistency
Criteria for an Acceptable Potency Assay for Cell-based Therapeutic Cancer Vaccines

- **Assumption:**
 The induction of a protective IR is the most probable mechanism to account for efficacy.

- **Results of any potency assay must answer 2 questions**
 - Is the amount of one or more selected Ags sufficient to induce a clinically meaningful IR?
 - Based on clinical studies, this confirms that enough Ag is present to result in a therapeutic IR.
 - Is the amount of one or more selected Ags in the vaccine consistent from batch-to-batch?
 - Target level +/- $0.5 \log_{10}$
 - Also select other Ags, if necessary, for which the amount of Ag expression is sensitive to manufacturing conditions – even if those Ags are unrelated to efficacy.
Potency Assay Considerations for Cell-based Therapeutic Cancer Vaccines

- Quantitative measurement of 1 or more cellular Ags (surface or internal)
 - Must be related to biological activity or effect
 - Ab formation in humans provides a link to biological effect
- Is a bioassay also necessary?
 - During clinical development, direct correlates of clinical protection have not yet been established
Possible Outcomes of Efficacy in Phase 3 Studies of Cell-based Therapeutic Cancer Vaccines

1. IR to 1 or more selected Ags correlates with efficacy
 - Ideal situation
 - Potency can be based on one or more of the Ags

2. IR to 1 or more selected Ags is demonstrated, but there is no correlation with efficacy
 - IR is complex and may involve both the cellular & humoral arms to an unknown combination of Ags

3. IR to selected Ags is poor, but clinical efficacy is established
 - Quantitative Ag expression is probably unacceptable
 - A bioassay provides an alternative measure of potency, and should be developed in parallel as a backup
An Acceptable Potency Assay for Cell-based Therapeutic Cancer Vaccines

- Number of viable cells that express selected Ags that correlate with efficacy
- Quantitative measure of expression of the selected Ags
- Consistent with:
 - ICH & WHO definitions of potency
 - Approach used for infectious disease vaccines and an analogous product (Carticel)
An Acceptable Potency Assay for Cell-based Therapeutic Cancer Vaccines When There Is No Correlation With Efficacy

- Viable cell count
- Bioassay
Possible Bioassays for Cell-based Therapeutic Cancer Vaccines

- Animal challenge (*in vivo* protection)
 - No current model exists
 - Validation issues
 - May not reflect the human IR

- Animal Ab production to selected Ags
 - May not reflect the human IR
 - Reaction to different epitopes on an Ag
 - Transgenic animals may be useful
Possible Bioassays for Cell-based Therapeutic Cancer Vaccines

- Vaccine cell lysis by human CTLs cell lines to selected Ags
 - Availability of the CTL lines
 - Standardization of assay
 - Validation of the assay
 - Clones are reactive to only a single epitope

- Production of a cytokine marker in a mixed-lymphocyte culture
 - T-cell response to multiple Ags
 - Cells obtained from humans or animals who received the vaccine
 - Cytokine release measured after co-culture
Final Selection of a Potency Assay for Cell-based Therapeutic Cancer Vaccines When a Correlation With Efficacy Is Established

- Routine lot release
 - Viable cell count
 - Quantitative Ag expression
- Comparability (manufacturing changes)
 - Viable cell count
 - Quantitative Ag expression
 - Bioassay