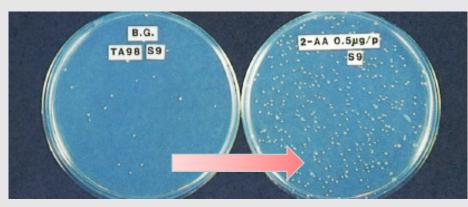

#### Bigdata Analysis: Outcome of the 2nd AMES/QSAR International Challenge Project

Ayako Furuhama, Ph.D.

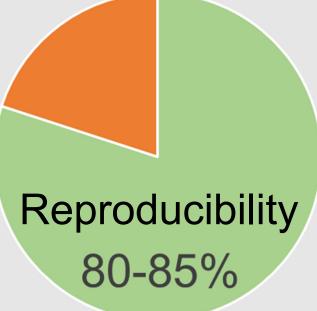
Division of Genetics and Mutagenesis (DGM) Center for Biological Safety and Research (CBSR) National Institute of Health Sciences (NIHS), Japan

11th Annual Global Summit on Regulatory Science (GSRS21) October 5 2021

The opinions in this presentation are my own and do not necessarily reflect the views and policies of NIHS and Ministry of Health, Labour and Welfare of Japan (MHLW) or else.







#### Ames test



- In vitro genotoxicity testing
- High reproducibility
- Sensitive to detect carcinogens and non-carcinogens compared with other tests.



#### Positive



 $\rightarrow$  In silico Ames QSAR is effective for regulation.





- High sensitivity
- High negative predictivity
  - Minimum false-negative
- Wide coverage
  - Max chemical space

### → Need high quality data



#### Bigdata used in the 1st and 2nd Ames/QSAR International Challenge Projects



#### Proprietary dataset by DGM/NIHS

- 1. Ames database with >10,000 new chemicals.
- 2. The origin of the Ames test reports is ANEI-HOU, MHLW
- 3. The reports were originally undisclosed but the outcomes (positive or negative) were made available for validation, development and improvement of QSAR tools.

#### High quality Ames test data

- 1. ANEI-HOU test guideline, similar to OECD TG 471
- 2. Five strains with/without metabolic activation

MHLW: the Ministry of Health Labour and Welfare of Japan ANEI-HOU: Industrial Safety and Health Act; To secure safety and health in the workplace, new chemicals in >100 kg/year require Ames test. Honma et al., *Mutagenesis* 34, 2-16, 2019 modified.



### The 1st project achievements



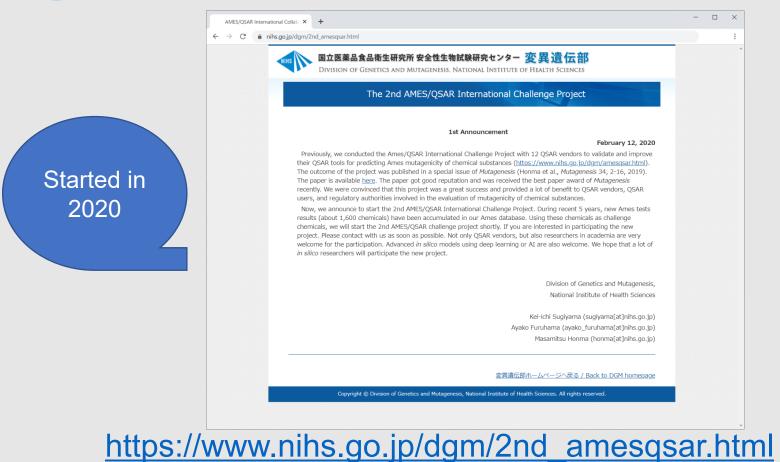
## *Mutagenesis* Special Issue, **34** (2019)

Mutagenesis, 2019, 34, 3–16 doi:10.1093/mutage/gey031 Original Manuscript

OXFORD

**Original Manuscript** 

#### Improvement of quantitative structure-activity relationship (QSAR) tools for predicting Ames mutagenicity: outcomes of the Ames/QSAR International Challenge Project


Masamitsu Honma<sup>\*</sup>, Airi Kitazawa, Alex Cayley<sup>1</sup>, Richard V. Williams<sup>1</sup>, Chris Barber<sup>1</sup>, Thierry Hanser<sup>1</sup>, Roustem Saiakhov<sup>2</sup>, Suman Chakravarti<sup>2</sup>, Glenn J. Myatt<sup>3</sup>, Kevin P. Cross<sup>3</sup>, Emilio Benfenati<sup>4</sup>, Giuseppa Raitano<sup>4</sup>, Ovanes Mekenyan<sup>5</sup>, Petko Petkov<sup>5</sup>, Cecilia Bossa<sup>6</sup>, Romualdo Benigni<sup>6,7</sup>, Chiara Laura Battistelli<sup>6</sup>, Alessandro Giuliani<sup>6</sup>, Olga Tcheremenskaia<sup>6</sup>, Christine DeMeo<sup>8</sup>, Ulf Norinder<sup>9,10</sup>, Hiromi Koga<sup>11</sup>, Ciloy Jose<sup>11</sup>, Nina Jeliazkova<sup>12</sup>, Nikolay Kochev<sup>12,13</sup>, Vesselina Paskaleva<sup>13</sup>, Chihae Yang<sup>14</sup>, Pankaj R. Daga<sup>15</sup>, Robert D. Clark<sup>15</sup> and James Rathman<sup>14,16</sup>

Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kanagawa 210-9501, Japan, <sup>1</sup>Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds, LS11 5PS, UK, <sup>2</sup>MultiCASE Inc., 23811 Chagrin Blvd Ste 305, Beachwood, OH 44122, USA, <sup>3</sup>Leadscope, Inc., 1393 Dublin Road, Columbus, OH 43215, USA, <sup>4</sup>Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via G. La Masa19 Milano, Italy, <sup>5</sup>Laboratory of Mathematical Chemistry, As. Zlatarov University, Bourgas, Bulgaria, <sup>6</sup>Istituto Superiore di Sanita', Viale Regina Elena, 299 00161 Rome, Italy, <sup>7</sup>Alpha-Pretox, Via G. Pascoli 1, 00184 Rome, Italy, <sup>8</sup>Prous Institute, Rambla de Catalunya, 135, 3-2, Barcelona 08008, Spain, <sup>9</sup>Swetox, Karolinska Institutet, Unit of Toxicology Sciences, Södertälje 15136, Sweden, <sup>10</sup>Department of Computer and Systems Sciences, Stockholm University, Box 7003, SE-164 07 Kista, Sweden, <sup>11</sup>Fujitsu Kyushu Systems Limited, 1-5-13 Higashihie, Hakata-ku, Fukuoka 812-0007, Japan, <sup>12</sup>IdeaConsult Ltd., 4 A. Kanchev str., Sofia 1000, Bulgaria, <sup>13</sup>Department of Analytical Chemistry and Computer Chemistry, University of Plovdiv, 24 Tsar Assen St., Plovdiv 4000, Bulgaria, <sup>14</sup>Molecular Networks GmbH and Altamira LLC, Neumeyerstrasse 28 90411 Nürnberg, Germany and 1455 Candlewood Drive, Columbus, OH 43235, USA, <sup>15</sup>Simulations Plus, Inc., 42505 10th Street West Lancaster, CA 93534, USA and <sup>16</sup>Chemical and Biomolecular Engineering, The Ohio State University, 151 W. Woodruff Ave. Columbus, OH 43210, USA

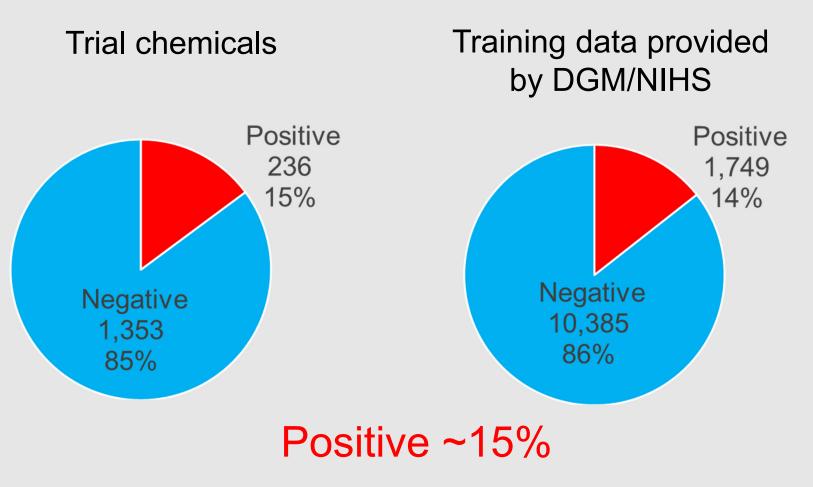
This paper received best paper award of *Mutagenesis* in 2019



### The 2nd Ames/QSAR project



Chemical Hazards Control Division, Industrial Safety and Health Department, MHLW of Japan for providing the ANEI-HOU Ames dataset and allowing us to use the data in the projects.






| Where                                        | 1st project DGM/NIHS                                               | 2nd project DGM/NIHS                                |  |  |  |
|----------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------|--|--|--|
| When                                         | 2014 - 2017                                                        | 2020                                                |  |  |  |
| Who participate                              | 12 teams (7 countries)<br>Mainly QSAR venders                      | 19 teams (11 countries)<br>Academia/non-commercials |  |  |  |
| What kind predictions                        | Three trials:<br>~4,000 chemicals/trial                            | One trial:<br>~1,600 chemicals                      |  |  |  |
| How many<br>training data<br>provided by DGM | Trial I: 0 data<br>Trial II: ~4,000 data<br>Trial III: ~8,000 data | >12,000 data used at the 1st project                |  |  |  |
| Why                                          | QSAR tool improvements                                             |                                                     |  |  |  |
| by using                                     | Statistical, rule-based,<br>its consensus models                   | Machine learning models<br>and AI based systems     |  |  |  |



## Ames results in the 2nd project







# Additional data provided to the participants of the 2nd project

| CAS RN Chemical Name Structure |           |        | Result | Purity  | ity<br>Solvent | Without metabolic activation (- S9) |             |      |        | With metabolic activation (+ S9) |        |             |      |        |   |
|--------------------------------|-----------|--------|--------|---------|----------------|-------------------------------------|-------------|------|--------|----------------------------------|--------|-------------|------|--------|---|
| CAS KN Chemical Name           | Siluciule | Result | (%)    | Solvent |                | TA1535                              | WP2<br>uvrA | TA98 | TA1537 | TA100                            | TA1535 | WP2<br>uvrA | TA98 | TA1537 |   |
|                                |           |        | ++     | >99     | H2O            | ++                                  | -           | ++   | ++     | ++                               | +      | +           | ++   | +      | + |
| •                              |           |        | ++     | 99.5    | DMSO           | ++                                  | +           | +    | +      | -                                | ++     | +           | +    | +      | - |

- Purity
- Solvent
- Results of each strain

++: Strongly Positive +: Positive -: Negative



### 2nd Project participants



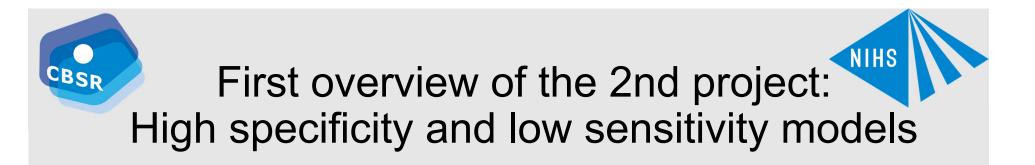
| Name                                                                   | Country     |
|------------------------------------------------------------------------|-------------|
| 1 Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences | China       |
| 2 Altox Ltd.                                                           | Brazil      |
| 3 MN-AM                                                                | Germany/USA |
| 4 Leadscope, Inc.                                                      | USA         |
| 5 Istituto di Ricerche Farmacologiche Mario Negri - IRCCS              | Italy       |
| 6 IdeaConsult Ltd.                                                     | Bulgaria    |
| 7 MultiCASE Incorporated                                               | USA         |
| 8 Lhasa Limited                                                        | UK          |
| 9 Istituto Superiore di Sanità (ISS)                                   | Italy       |
| 10 Gifu University                                                     | Japan       |
| 11 Massachusetts Institute of Technology                               | USA         |
| 12 Simulations Plus, Inc.                                              | USA         |
| 13 Chemotargets                                                        | Spain       |
| 14 LMC - Bourgas University                                            | Bulgaria    |
| 15 The University of Sydney                                            | Australia   |
| 16 Meiji Pharmaceutical University                                     | Japan       |
| 17 Liverpool John Moores University                                    | UK          |
| 18 Evergreen AI, Inc.                                                  | Canada      |
| 19 Politecnico di Milano                                               | Italy       |
|                                                                        |             |



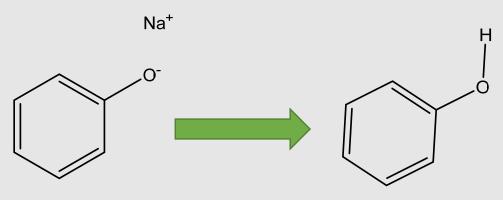
# The performance metrics of QSAR tools



#### 1st project


|                 | Phase I     | Phase II    | Phase III   |
|-----------------|-------------|-------------|-------------|
| Sensitivity (%) | 56.7        | 58.0        | 57.1        |
|                 | (38.6–70.0) | (41.6-72.1) | (31.7–67.6) |
| Specificity (%) | 77.7        | 84.2        | 79.9        |
|                 | (62.5–91.5) | (64.9–92.8) | (60.7–93.0) |
| Accuracy (%)    | 74.7        | 80.3        | 76.7        |
|                 | (63.6-83.9) | (65.8-87.7) | (68.0–87.3) |
|                 |             |             |             |

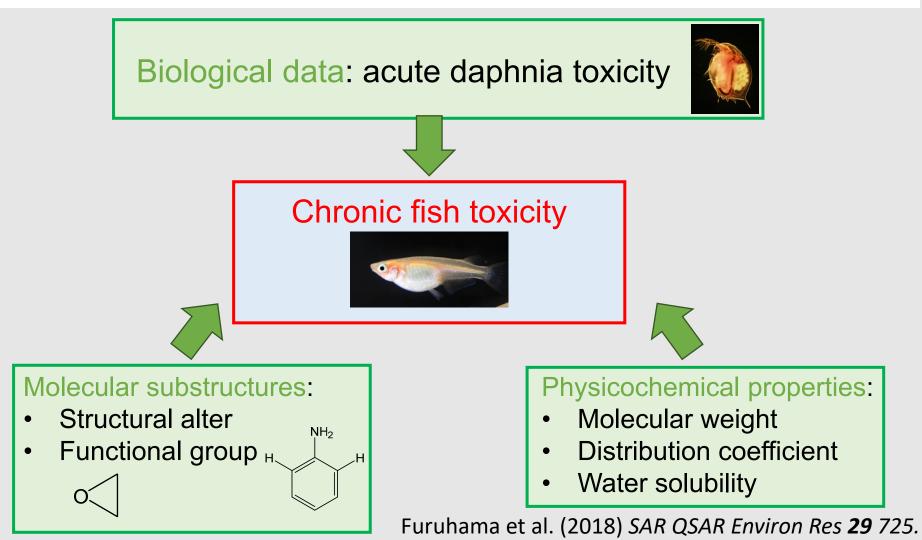
Honma et al., *Mutagenesis* 34, 2-16, 2019 modified.

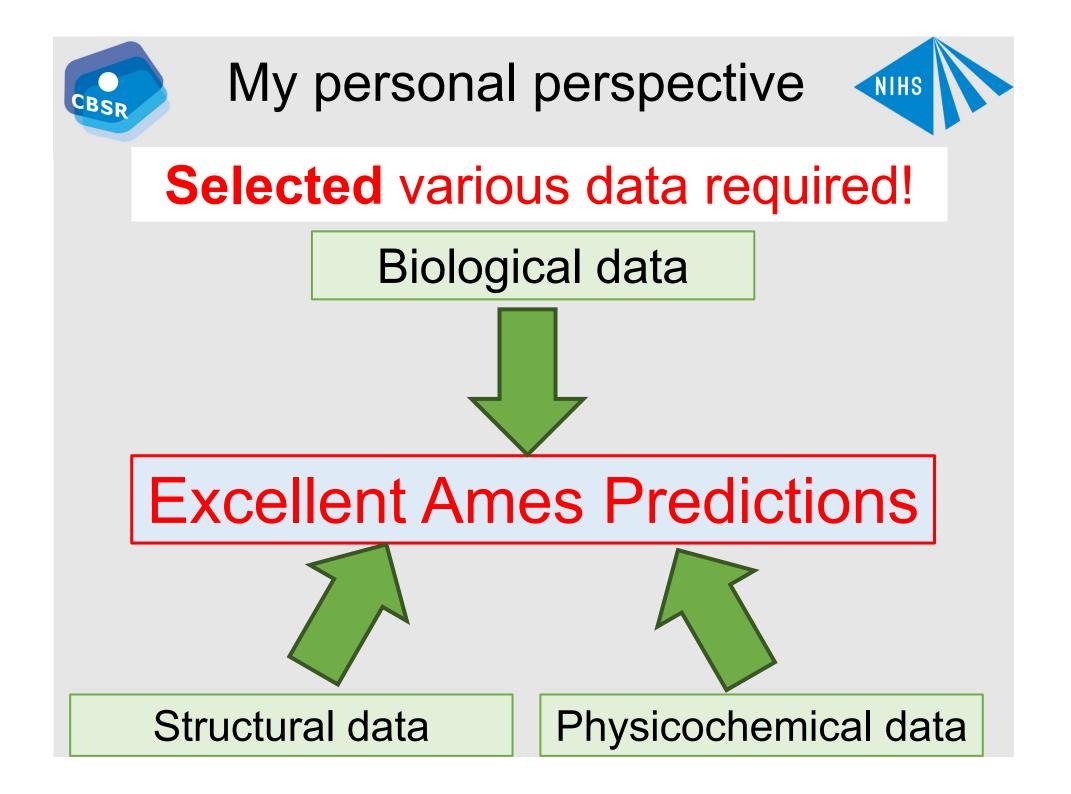

Sensitivity : the ability to detect mutagens Specificity : the ability to detect non-mutagens Accuracy: proportion of correct predictions

2nd project: under analysis

The models still show -Low sensitivity -High specificity




Lack of data curations may enhance the data vias
Valance of positive/negative data (ideal 1/1)
Chemical structures




>10,000 data: small for the Ames prediction of new chemicals
Experiences may cover a small chemical space

# Ayako's previous study: model development for chronic ecotoxicity prediction

Daphnia toxicity + selected structural and physicochemical data brought good fish chronic toxicity perdition models







## Summary



- The high reproductivity and amount of Ames data allow us the use of QSAR.
- DGM/NIHS started the 2nd Ames/QSAR project providing with informative >10,000 Ames data.

→ First overview: Models show high specificity and low sensitivity. >10,000 Ames data are not enough.

• For improving predictivity, experiences and various type of selected data might be important as well as the number of Ames data.

 $\rightarrow$  We need to investigate how to improve the reliable QSAR models and *in silico* predictions including machine learning and AI.



## Acknowledgements and fundings

- The participants in the Ames/QSAR International Challenge
- Dr. Masamistu Honma (Deputy Director General, NIHS)
- Dr. Kei-ichi Sugiyama (DGM Director, NIHS)
- Ms. Airi Kitazawa and Dr. Toshio Kasamatsu (DGM, NIHS)
- The Chemical Hazards Control Division, Industrial Safety and Health Department, MHLW for providing the ANEI-HOU Ames dataset and allowing us to use the data in the projects.
- The Ministry of Health, Labour, and Welfare under Grants (H30-Chemistry-Destination-005, 21KD2005, and 21KA1001).