A novel mutation assay with a nonselective protocol using a next-generation DNA sequencer

Masami Yamada¹,*, Makiko Takamune¹, Tomonari Matsuda² ¹Division of Genetics & Mutagenesis, NIHS; ²Research Center for Environmental Quality Management, Kyoto University

GENOTOXICITY TESTS

<u>In vitro tests</u> <u>(using cell culture or bacteria)</u>

- 1. Rec assay
- 2. *umu* test
- 3. <u>Reverse mutation assay</u> (Ames test)
- 5. Forward mutation assay
- 6. Unscheduled DNA synthesis test
- 5. Sister chromatic exchange test
- 6. Chromosomal aberration test
- 7. Micronucleus assay
- 8. Comet assay

etc.

<u>In vivo tests</u> (using animals)

- 1. Micronucleus assay
- 2. Sister chromatic exchange test
- 3. Chromosomal aberration test
- 4. Unscheduled DNA synthesis test
- 5. Pig-a assay
- 6. Transgenic animal gene mutation assay
- 7. Drosophila Spot test
- 8. Comet assay
- etc.

GENOTOXICITY TEST Conventional method

Ames test

Data can be available within a week
 No need of special facilities
 Reproducible and reliable data
 Accumulation of reliable data in accordance with GLP
 Data are the number of colonies

From a different perspective

Identification of <u>whether the chemical is</u> <u>hazardous</u> is the principal aim of Ames test.

We can directly detect the mutation induced by the chemical in the genome with NGS

A NEXT GENERATION SEQUENCER MUST BE USEFUL !

GENOTOXICITY TEST

Novel method

Whole genome sequencing

> Data can be available within a week ✓
> The special facility is required ↓
> Reproducible and stable data ✓
> No data at present ↓
◆ Data is ACTUAL base changes !

<u>Ames test</u>	<u>Whole genome sequencing</u>
5 strains and 4 or more doses	One strain is enough and not many doses are needed
Frameshift or base substitution	Any type of mutation
Minimal plates for two-night incubation	LB plates for one night incubation
His ⁺ selection	Non-selective method
5000 µg/plate for a top dose, and one hundred plates	Lower doses, ~10 plates
Precipitation or killing effect of samples may disturb the assay	Colony formation is minimum requirement

Conventional Ames test

Test chemical: AF-2 (0.01µg/plate) DMSO as a solvent control Strain: TA100, without S9mix

Randomly pick up the revertants Few clones for each condition Prepare the genomic DNA

<u>Whole genome sequencing of</u> <u>the clones using an NGS, Miseq</u>

4th ACEM, 11 December 2014, Kolkata

PROCEDURE

The expected base substitutions at the target site of His⁺ reversion

Treatment	Clone ID	Frequency (%)	Coverage	Gene	Site	Mutation	Amino Acid Change
	1	100	14	hisG	206	C>A	Pro69His
	2	100	17	hisG	205	C>A	Pro69lle
DMSO	3	100	14	hisG	206	C>A	Pro69His
	4	100	14	hisG	205	C>A	Pro69lle
	5	100	17	hisG	205	C>T	Pro69Phe
	6	100	29	hisG	206	C>A	Pro69His
	7	100	15	hisG	206	C>A	Pro69His
AF-2	8	100	37	hisG	206	C>T	Pro69Leu
	9	100	10	hisG	205	C>T	Pro69Phe
	10	100	26	hisG	205	C>G	Pro69Val

4th ACEM. 11 December 2014. Kolkara Matsuda et al., Genes & Environment, 35, 53-56, 2013

Base Substitutions Induced on the Whole Genome of the Ames tester Strain TA100 Treated with AF-2

Treatment	Clone ID	Frequency (%)	Coverage	Gene	Site	Mutation	Seq. context	Amino acid change
DMSO	2	100	31	hypE	831	T>A	GAT [T] GCC	
	6	100	29	yraP	25	G>A	GCA[G]TCC	V 19 I
	8	96.7	30	сиеО	964	C>T	CCG [C] TGC	
AF-2	8	100	29	ybiR	832	C>A	GCA [C] TGT	L278M
	8	100	38	xseA	996	C>G	GGC [C] AGG	
	10	100	27	hisG	231	G>C	GCT [G] GAA	(0)

4th ACEM, 11 December 2014, Kolkara Matsuda et al., Genes & Environment, 35, 53-56, 2013

RESULTS - 2 ENU treated strain YG7108*

Induced Reverse Mutations in Ames Test and Base Substitutions Induced in the Whole Genome

ENU	Ames test	Whole genome sequence (per genome)							
µg/plate	revertants/plate	total	G:C to A:T	A:T to G:C	others				
		0	0	0	0				
0	17	0	0	0	0				
0	17	0	0	0	0				
		0	0	0	0				
	3,250	12	12	0	0				
50		19	16	2	1(GCtoCG)				
50		14	14	0	0				
		8	8	0	0				
	8,953	64	63	1	0				
250		62	57	4	1(GCtoTA)				
250		48	44	4					
		71	65	5	1(Gcto CG)				

ADVANCED PROTOCOL

No selection!

- I. Treatment with the test chemical is conducted <u>in liquid medium</u>.
- II. The treated culture is spread onto an <u>LB plate</u> after appropriate dilution.
- III. Colonies are obtained <u>without phenotypic</u> <u>selection</u>.
- IV. Genomic analysis with a next-generation DNA sequencer is performed for <u>a few randomly</u> <u>chosen colonies</u>.

Mutation spectrum of the genome in TA1535 treated with ENU with no selection

Pre- incubation time (min)	x 10 ⁶ cells	Mutation/ genome	Ave.	GC to AT	GC to TA	GC to CG	AT to GC	AT to CG	AT to TA	Insertion	Deletion
	0 295	0		0	0	0	0	0	0	0	0
0		0	0	0	0	0	0	0	0	0	0
		0		0	0	0	0	0	0	0	0
) 47	19		16	0	0	3	0	0	0	0
20		18	22	17	0	0	1	0	0	0	0
		29		27	0	0	1	0	0	0	0

	4		4	0	0	0	0	0	0	0	
40	46	22	9	20	0	0	1	0	0	0	1
		1		1	0	0	0	0	0	0	0
60 43	16		16	0	0	0	0	0	0	0	
	9	16	6	0	0	2	0	1	0 🖉	0	
		23		21	0	0	2	0	0	0	0

Whole genome sequencing would realize THAT **ANY MUTATIONS** ! can be detected in ONE STRAIN! with MORE PRECISE DATA ! at LESS COST !

IN THE FUTURE

- Considering the remarkable recent advances in the performance of DNA sequencers, it would soon be possible to easily determine whole genomes of rodents or cultured human cells exposed to chemicals.
- However, taking into consideration of the principal aim of Ames test, that is, determining of hazard identification on DNA induced by chemicals, bacteria still have an advantage due to its small size of genome and identical composition of DNA to the other organisms.