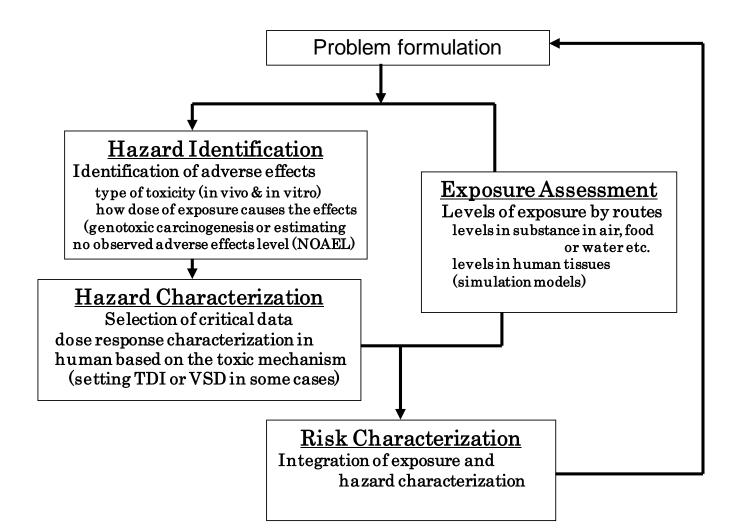
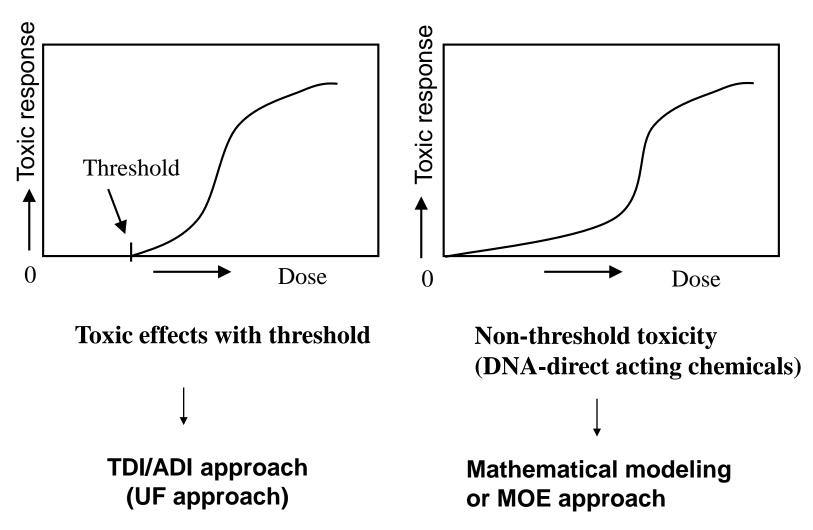
Session 1: Chemical Risk Assessment in Japan; Current Status, Challenges and Opportunities

# Risk Assessment Methodology for Chemicals and Contaminants in Foods


## **Akihiko Hirose**

Division of Risk Assessment National Institute of Health Sciences (NIHS)


# Today's topics

- CSAF & BMD methods
- TTC (Threshold of Toxicological Concern)
- QSAR/Category approach
- Needs of integrated risk assessment and more experts ...

# Traditional Risk Assessment paradigm



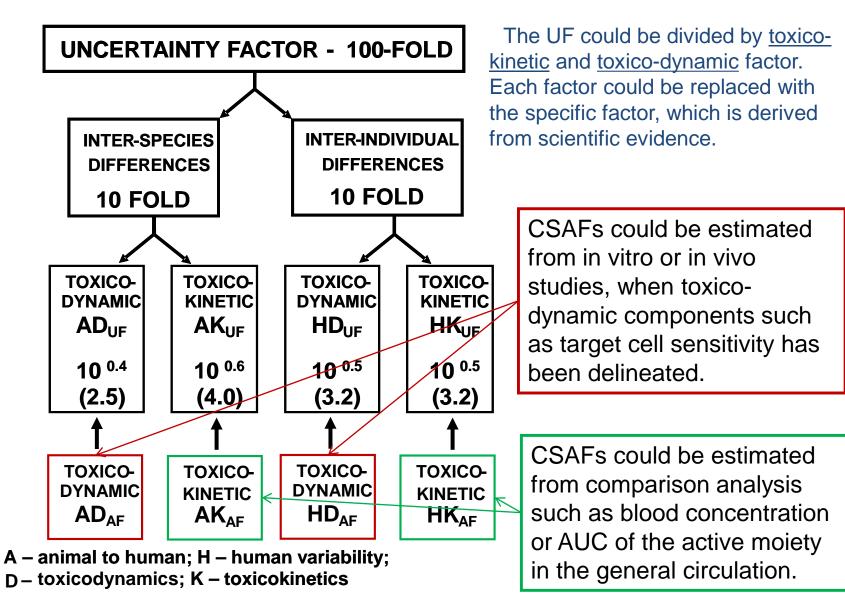
# Hazard characterization Dose Response Assessment



Derivation of ADI: Acceptable Daily Intake or TDI: Tolerable Daily Intake

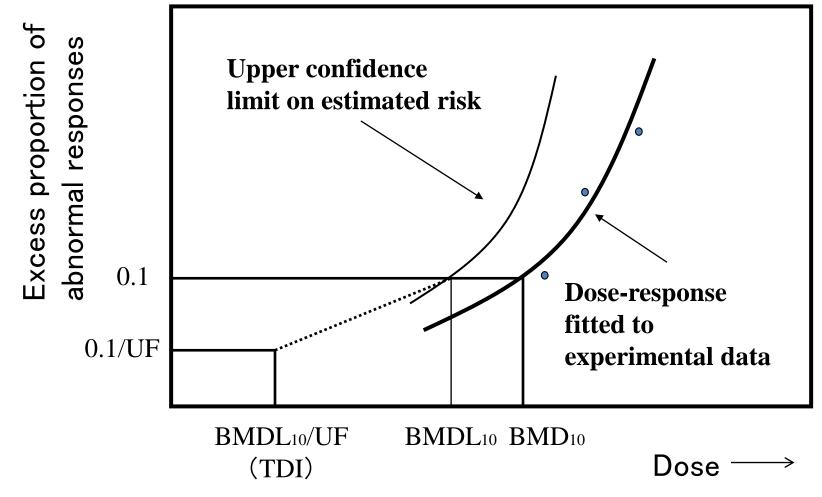
ADI = NOAEL/SF (Safety factor)

**TDI = NOAEL/UF (Uncertainty factor)** 


[Construction of the UF or SF]

- 1. Inter species difference : 10, (or allometric adjusting)
- 2. Intra species difference : **10** *to adjust scientifically*
- 3. Short-term study : max. 10
- 4. LOAEL (NOAEL is not determined): max. 10
- 5. Severity of toxicity : max. 10

(carcinogenicity, teratogenicity, neurotoxicity etc.)


# Sub-division of UF, and replacement with CSAF

(CSAF: Chemical specific adjusting factor)



AF - the adjustment factor calculated from chemical-specific data

### **Graphical illustration of benchmark dose (BMD)**



- The benchmark dose is the effective dose (or its lower confidence limit) that produces a certain increase in incidence above control levels.
- The advantages of the benchmark dose are that it takes into account the slope of the dose-response curve, the size of the study groups and the variability in the data.

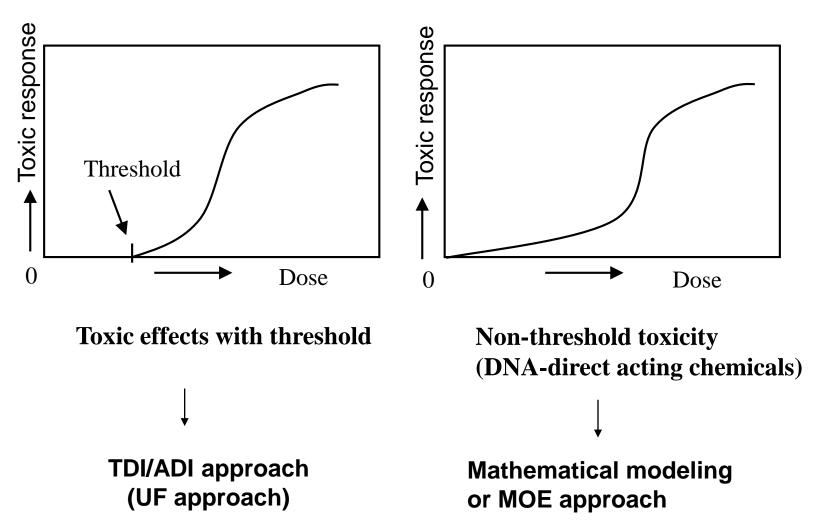
### **Risk Characterization for each chemical**

• Direct comparison between TDI (ADI or VSD) and Daily Intake

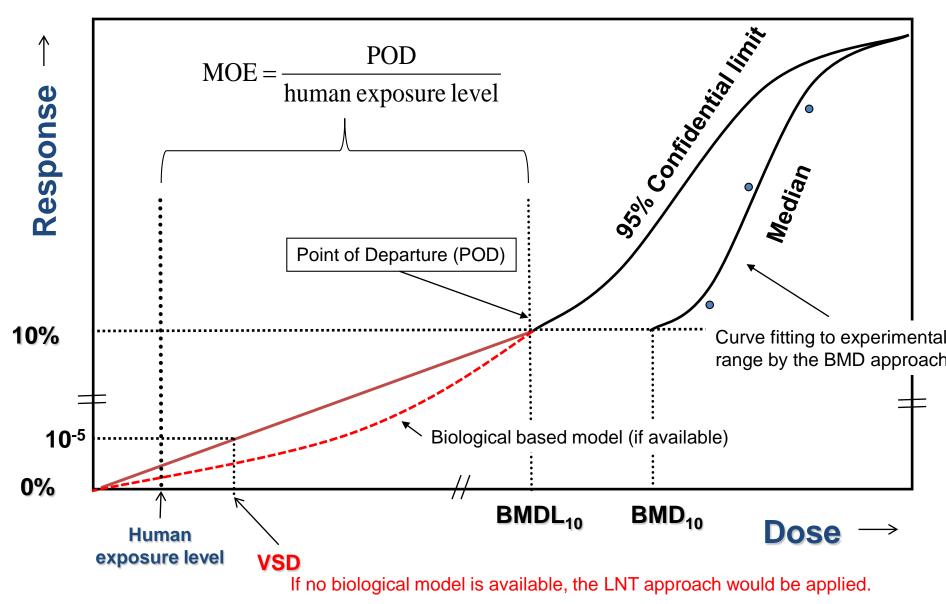
Whether is "TDI" > "Total daily Intake" (or Estimated Intake), or not?

• For derivation of guidance values (GV)

(health based standards for foods, drinking water or air), the below equation is usually accepted.


### GV = <u>TDI x (average body weight) x (allocation factor\*)</u> total daily intake of vehicle

(\*: the ratio of contribution via the targeted vehicle among all exposure scenarios)


### • Margin of Exposure or Margin of Safety

MOE or MOS = NOAEL / Human Exposure level (The value of MOE may be used for chemical management prioritization or political decision etc.)

# Hazard characteriztion Dose Response Assessment



### Genotoxic carcinogen risk assessment by using BMD method



BMD method is also used for derivation of the POD in the genotoxicity risk assessment

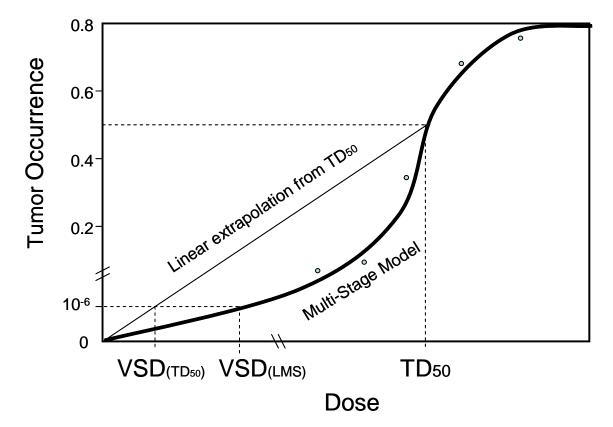
# Problem of the risk assessment of plastics for food container

(In case of very low level exposure and limited toxicity information)

### • What is targets chemicals?

Plastics as high molecular weight polymer could not be absorbed into the body.  $\rightarrow$  no health concern.

But, foods might be contaminated with eluted chemical from plastics


- → Plastics might contain additives, by-products, catalysts, monomer, impurities, degradation products, etc.
- How to assess safety for many kinds of chemicals in plastics?
   It is not realistic to assess fully the potential risks of all chemicals.
   Toxicological information for most of the chemicals are limited.
   →The toxicity testing schemas depending on migration levels are required. (Threshold of exposure level is necessary)

### Summary table of minimum required toxicity tests

| levels of migrant<br>(intake estimate at 3 kg of<br>total diet in case of FDA) |                                            | U.S. FDA                                                                                                                                                                                             | EFSA                                                                                                                                                                                                                                                                                                            |  |  |
|--------------------------------------------------------------------------------|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| ≦0.5 ppb<br>(≦1.5 ug/day)                                                      |                                            | No safety studies are recommended ;<br>evaluation of structural similarity to<br>known toxicants                                                                                                     | <ul> <li>3 genotoxicity studies in vitro:</li> <li>i) A test for induction of gene<br/>mutations in bacteria</li> <li>ii) A test for induction of gene</li> </ul>                                                                                                                                               |  |  |
| 0.5 ~ 50 ppb<br>(1.5 ~ 150 ug∕day)                                             |                                            | 2 genotoxicity studies in vitro:<br>i ) a test for gene mutations in<br>bacteria and                                                                                                                 | mutations in mammalian cells in<br>vitro (preferably the mouse<br>lymphoma (ML) to assay)                                                                                                                                                                                                                       |  |  |
|                                                                                | First threshold of regulation (TOR) by FDA | ii ) an in vitro test with cytogenetic<br>evaluation of chromosomal damage<br>using mammalian cells or an in vitro<br>mouse lymphoma tk <sup>±</sup> assay                                           | <ul><li>iii) A test for induction of<br/>chromosomal aberrations in<br/>mammalian cells in vitro</li></ul>                                                                                                                                                                                                      |  |  |
| 50 ppb ~ 1 ppm<br>(150 ~ 3000 ug/day)                                          |                                            | <ul> <li>Above 2 tests+an in vivo test for<br/>chromosomal damage using rodent<br/>hematopoietic cells</li> <li>2 subchronic oral toxicity tests (a<br/>rodent and a non-rodent species).</li> </ul> | <ul> <li>Above 3 mutagenicity tests</li> <li>A 90-day oral toxicity study</li> <li>Data to demonstrate the absence of potential for accumulation in man</li> </ul>                                                                                                                                              |  |  |
| >1 ppm<br>~5 ppm                                                               |                                            | food additive petition should be submitted                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                 |  |  |
| >5 ppm                                                                         |                                            |                                                                                                                                                                                                      | <ul> <li>Above tests</li> <li>Studies on absorption, distribution,<br/>metabolism and excretion</li> <li>Studies on reproduction in one<br/>species, and developmental toxicity,<br/>normally in two species</li> <li>Studies on long-term<br/>toxicity/carcinogenicity, normally in<br/>two species</li> </ul> |  |  |

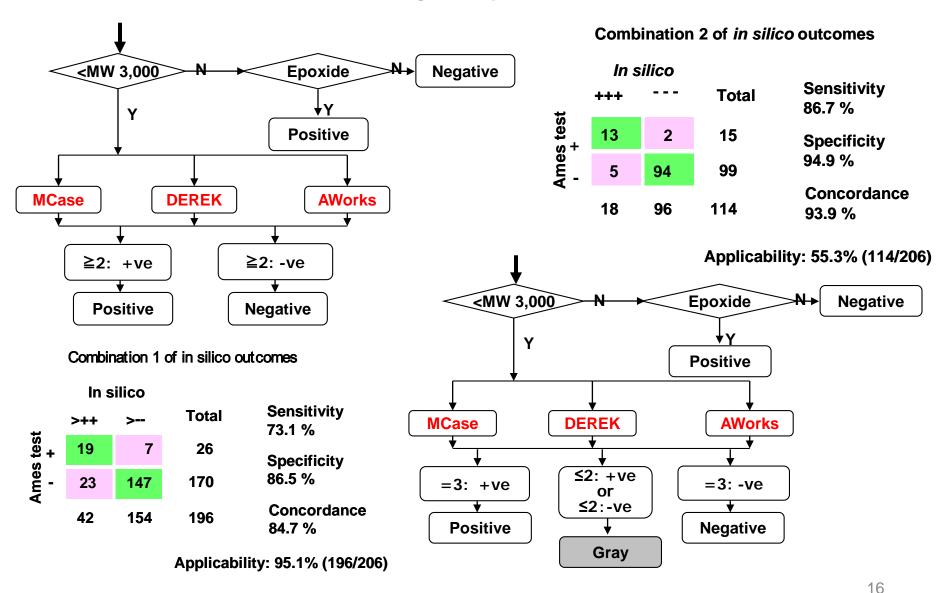
### **Derivation of Threshold of Toxicological Concern: TTC**

The first TTC of the TOR (Threshold of Regulation) in the U.S.FDA was developed by using the calculate VSD (Virtual Safety Dose) from  $TD_{50}$  in the Carcinogenic Potency Database (CPDB)



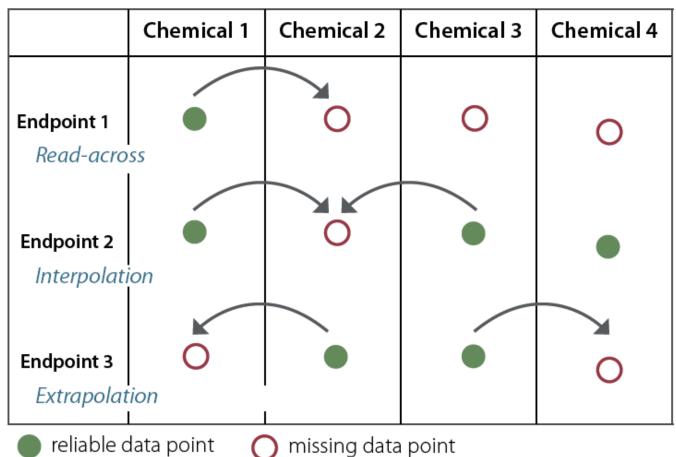
The value of the VSD linearly extrapolated from TD50 is more conservative than the value of the VSD calculated with the LMS (linearized multistage) model.

### Summary table of minimum required toxicity tests based non-carcinogenic endpoints


| levels of migrant<br>(intake estimate at<br>3 kg of total diet in<br>case of FDA) | U.S. FDA                                                                                                                                                                                                      | EFSA                                                                                                                                                                                | Proposal                                                                                                        | Estimated<br>Exposure                             |  |
|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------|--|
| ≦0.5 ppb<br>(≦1.5 ug/day)                                                         | No s<br>reco<br>stru<br>toxic non-carcinogeni                                                                                                                                                                 |                                                                                                                                                                                     | structural similarity to known toxicants                                                                        | ≦1.5 ug/day<br>(0.5 ppb)                          |  |
| 0.5 ~ 50 ppb<br>(1.5 ~ 150<br>ug∕day)                                             | 2 genotoxicity studies in vitro:<br>i ) a test for gene mutations in<br>bacteria and<br>ii ) an in vitro test with<br>cytogenetic evaluation of<br>chromosomal damage using<br>mammalian cells or an in vitro | mutations in mammalian<br>cells in vitro (preferably the<br>mouse lymphoma (ML) to<br>assay)<br>iii) A test for induction of<br>chromosomal aberrations<br>mammalian cells in vitro | 2 of 3 tets<br>i) Ames test<br>ii) CA test in<br>mammalian cells <i>in</i><br><i>vitro</i><br>iii) ML assay     | >1.5<br>~<br><mark>100 ug/day</mark><br>( 50 ppb) |  |
| 50 ppb ~ 1 ppm<br>(150 ~ 3000<br>ug/day)                                          | <ul> <li>mouse lymphoma tk± assay</li> <li>Above 2 tests+ an in vivo test<br/>for chromosomal damage<br/>using rodent hematopoietic<br/>cells</li> <li>2 subchronic oral toxicity</li> </ul>                  | <ul> <li>Above 3 mutagenicity tests</li> <li>A 90-day oral toxicity study</li> <li>Data to demonstrate the<br/>absence of potential for</li> </ul>                                  | Above 3 tests<br>A 90 day oral toxicity<br>study<br>(except of<br>organophosphate)                              | >100<br>~<br>2000 ug/day<br>( 1 ppm )             |  |
| >1 ppm<br>~5 ppm                                                                  | tests (a rodent and a non-<br>rodent species).<br>food additive petition should                                                                                                                               | accumulation in man                                                                                                                                                                 | Adequate toxicity                                                                                               |                                                   |  |
| >5 ppm<br>Threshold of conce<br>toxicities (ex. re<br>developmental toxi          |                                                                                                                                                                                                               | eproductive and                                                                                                                                                                     | information for the<br>compound specific<br>risk assessment<br>(usually all toxicity<br>tests for food additive | >2000 ug/day<br>(1 ppm)                           |  |
|                                                                                   |                                                                                                                                                                                                               | one species, and<br>developmental toxicity,<br>normally in two species<br>• Studies on long-term<br>toxicity/carcinogenicity,<br>normally in two species                            | petition)                                                                                                       | 14                                                |  |

# **Discussion for application of the TTC concept**

- The proposed thresholds for toxicity testing schema based on the TTC concept is considered to be similar to other authorities which were traditionally established.
- Development of genotoxicity QSAR system for helping TOR decision would be necessary
- In addition, more precise research on the advancing structural categorization, especially for repeateddose or developmental toxicities categorization, for developing specific TTCs would be required in future.


## **Combination (Q)SAR approach**

### with three mutagenicity (Q)SAR models



Acknowledgements: This work was supported by Health and Labour Sciences Research Grants of MHLW, Japan

# QSAR/Category approach



A chemical category can be represented graphically as a twodimensional matrix in which category members occupy different columns, and the category endpoints occupy different rows.

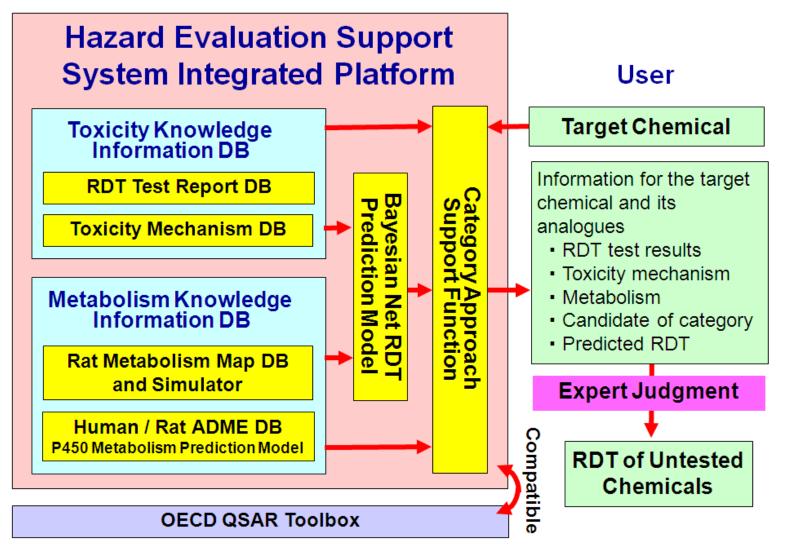
Data gaps may be filled by read-across from a tested to an untested chemical or by trend analysis.

### The OECD QSAR Toolbox for Grouping Chemicals into Categories

### **Category definition** Side-bar of experimental data

| Calegorize Delete<br>S S S S S S S X X<br>In Subcitogorize Contine Clustering Delete Delete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                          |                                         |                                                                                                 |                                                                                                                                   |                                                                                                                                          |                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | for Grouping<br>Into Categor     | QSAR Toolbox<br>g Chemicais<br>ries<br>by LMC, Bulga |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------------------------------|
| Contractional Contractors Con                                                                                                                                                        | Electronological consu-<br>Structure<br>Disubstance Identity<br>DPhysical Chemical Properties<br>DEmonsmertal Fale and Transport<br>DEcocol collegial Information<br>Difurman Health Hazards<br>PProfile | jever                                   | )<br>(Tenget)<br>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                           | پر<br>1                                                                                                                           | At Positive, Negative                                                                                                                    | H <sub>3</sub> C <sub>SH</sub> | *<br>~1 | De la constante de la constant | tive, Negativ                    | M: Postiv                                            |
| Tox hand dowitskish by Coree (orgen)<br>Tox hand dowitskish by Coree (orgen)<br>Japan & Synthe<br>Japan & Synthe<br>Alaska badje toxiby (MA by OALS)<br>Alaska badje toxib by MA<br>Alaska badje toxib b |                                                                                                                                                                                                          | Data poin<br>V<br>1<br>2<br>3<br>4<br>5 | ts<br>Endpoint<br>Summery<br>cardinogenicity<br>Summery<br>TD50<br>Chromosome<br>Gene inutation | Value<br>Positive<br>(Caronogericity)<br>II (CP003)<br>Negetive<br>344 inglegitasy<br>Positive<br>Negetive (Dene<br>invitation I) | Original value<br>Positive<br>(Carcinoponicity)<br>II (CPDD))<br>Negative<br>344 mg/ng body<br>Positive<br>Negative (Cene<br>mutation I) | Stran k                        | Organ   | T IN<br>Mutation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Type of me<br>n vitro<br>n vitro | thod                                                 |
| <b>1.Double-click</b> o<br>with measured da<br>detailed informatio<br>data point.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ta to see                                                                                                                                                                                                | 8<br>7<br>C III<br>Transpose            | Care mutation<br>Care mutation                                                                  | Negative (Cane<br>Positive (Cane<br>mutation ()                                                                                   | Negative (Gene<br>Positive (Gene<br>mutation I)                                                                                          |                                |         | Derivation and<br>Mutation<br>Research 597                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | in vitro<br>in vitro             | 2                                                    |
| In cooperation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                          |                                         |                                                                                                 |                                                                                                                                   |                                                                                                                                          |                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | OECD                                                                                                                                                                                                     |                                         |                                                                                                 |                                                                                                                                   |                                                                                                                                          |                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                                                      |

### Donation (Version 2.1) of database, profiler or QSAR from:


U.S. EPA Istituto Superiore de Sanita, Italy **European Commission Environment Canada** Danish EPA **RIVM**, the Netherlands MOE, Japan MHLW, Japan METI, Japan NEDO, Japan Fraunhofer Institute, Germany LMC, Bulgaria BfR, Germany Istituto Superiore de Sanita, Italy; Office of Public Health, Switzerland University of Vienna, Austria University of Tennessee, Knoxville, ECETOC CEFIC RIFM International QSAR Foundation Multicase Inc.; ChemAxon; Exxon Mobil; Unilever; P&G; L'Oréal; Dow Chemical; 18

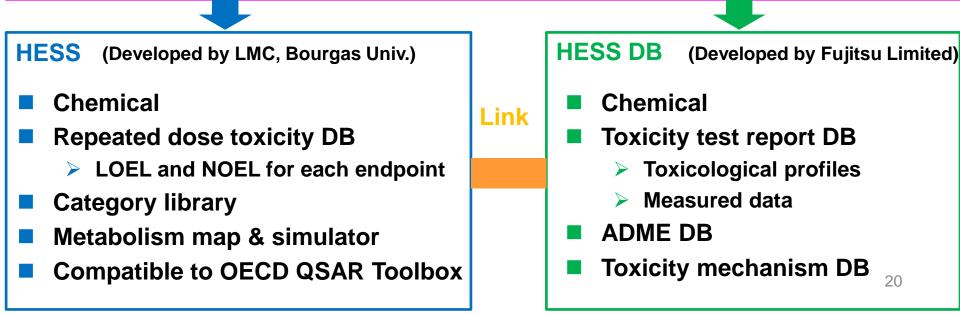
EUROPEAN CHEMICALS AGEN

# **HESS System**



http://www.safe.nite.go.jp/english/kasinn/qsar/hess-e.html

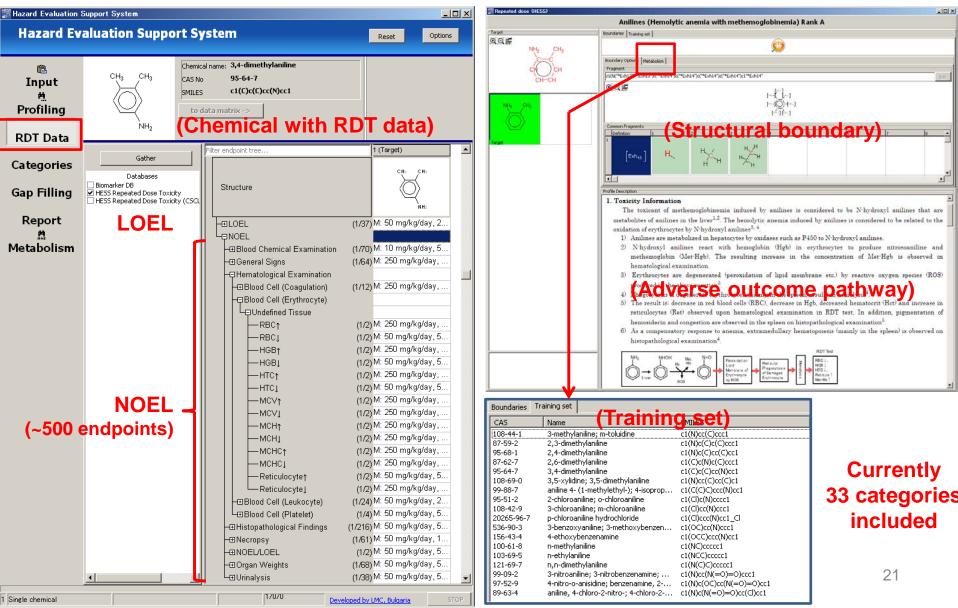



Hayashi, M. and Sakuratani, Y. 2011. Development of an Evaluation Support System for Estimating Repeated Dose Toxicity of Chemical Based on Chemical Structure. In: New Horizons in toxicity Prediction. Wilson, A. G. E. ed., Royal Society of Chemistry: Chap. 3.

# Development of Hazard Evaluation Support System<sup>2</sup> (HESS) and the attached database (HESS DB)

**Data** (Collected by NIHS, NITE, Tohoku Univ., Bourgas Univ.)

- **Toxicity test reports (545 reports for 515 chemicals, GLP standards)** 
  - 28d repeated dose toxicity (RDT) studies under Japan's Chemical Substances Control Law (CSCL)
  - Combined RDT and reproductive/developmental toxicity studies under CSCL
  - 13w NTP studies etc.
- Toxicity profiles (530)
  - judged by the committee of Japan's CSCL or created by the experts in toxicology


Related references (ADME, toxicity mechanism)



# **HESS (Data structure)**

#### Repeated dose toxicity data





Hazard Evaluation Support System

Ê. Input

#### **Hazard Evaluation Support System**

ÇI

N=0

Chemical name:

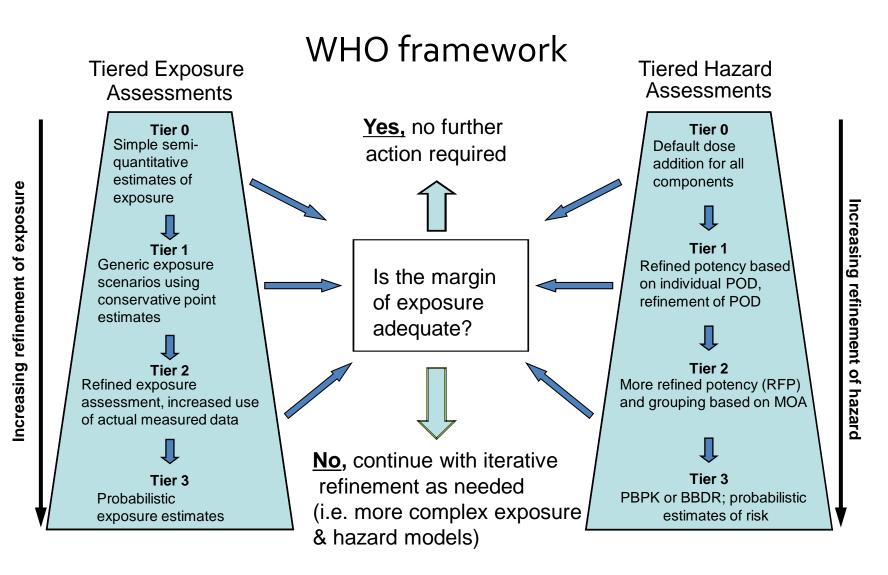
CAS No

SMILES

89-61-2

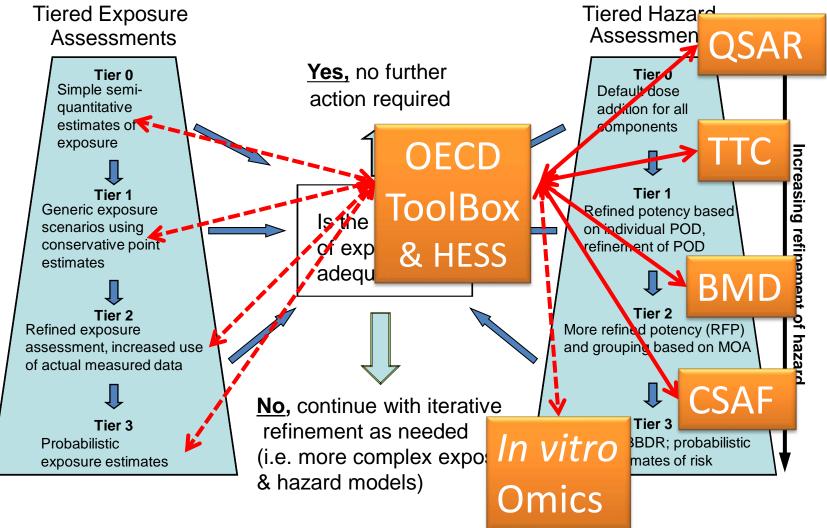
c1(Cl)c(N(=0)=0)cc(Cl)cc1

| nofiling<br>RDT Data | Target                       |              |                    | Analogs              |                   |              |  |  |
|----------------------|------------------------------|--------------|--------------------|----------------------|-------------------|--------------|--|--|
|                      | Filter endpoint tree         | 1 (Target)   | 2                  | 3                    | 4                 | 5            |  |  |
| Categories           |                              | 0<br>c1 )N=0 | NH2                | о=й <sup>0</sup>     | 0<br>0=N          | 0<br>0=N     |  |  |
| Gap Filling          | Structure                    | - T          | Ò-i                |                      | CH3               | Q            |  |  |
| Metabolism           | E Substance Identity         |              |                    |                      |                   |              |  |  |
|                      | Repeated Dose Toxicity       |              |                    |                      |                   |              |  |  |
| Report               |                              | Min          | M: 15 mg/kg/day    | M: 5 mg/kg/day       | M: 625 mg/L       | M: 625 mg/L  |  |  |
|                      | Blood Chemical Examination   | (3/4)        |                    | M: 20 mg/kg/day      |                   |              |  |  |
|                      | - Hematological Examination  |              |                    |                      |                   |              |  |  |
|                      | - □ Blood Cell (Erythrocyte) |              | LOEL               |                      |                   |              |  |  |
|                      | - Undefined Tissue           |              |                    |                      |                   |              |  |  |
|                      | — RBC↓                       | (9/16)       | M: 15 mg/kg/day, 1 | . M: 20 mg/kg/day, 2 | M: 1E4 mg/L, 1E4  | M: 5E3 mg/L  |  |  |
|                      | —HGB↓ (1                     | 10/17)       | M: 15 mg/kg/day, 1 | . M: 20 mg/kg/day, 2 | M: 1E4 mg/L, 1E4  | M: 5E3 mg/L  |  |  |
|                      |                              | 10/17)       | M: 15 mg/kg/day, 1 | . M: 20 mg/kg/day, 2 | M: 1E4 mg/L, 1E4  |              |  |  |
|                      | Reticulocyte↑ (1             | 10/14)       | M: 50 mg/kg/day, 5 | M: 60 mg/kg/day      | M: 5E3 mg/L, 1E4  |              |  |  |
|                      | Methemoglobin↑               | (5/9)        |                    | M: 20 mg/kg/day      | M: 2.5E3 mg/L, 1E | M: 1E4 mg/L, |  |  |
|                      | -⊞Histopathological Findings | (9/39)       | M: 15 mg/kg/day, 1 | M: 5 mg/kg/day, 5    | M: 625 mg/L, 2.5E | M: 625 mg/L, |  |  |
|                      | L⊞Organ Weights              | (5/16)       | M: 15 mg/kg/day, 5 | M: 20 mg/kg/day, 2   |                   |              |  |  |
|                      | L⊞NOEL (12/240               | ) Min        | M: 15 mg/kg/day    | M: 0 mg/kg/day       | M: <625 mg/L      | M: <625 mg/L |  |  |
|                      | ⊞Profile                     |              |                    |                      |                   |              |  |  |
|                      |                              |              |                    |                      |                   |              |  |  |
|                      | < 🗌                          |              |                    |                      |                   | 22 +         |  |  |


12 Nitrobonzonos (Homolytic anomia with mo

- 0 **X** 

Options


Reset

How to assess the risk of the mixture exposure ?



The International Programme on Chemical Safety (IPCS)

### WHO framework





24



#### **Toxicology Recognition Task Force (TRTF) Matrix**

As a result of 2009 and 2011 surveys and subsequent meetings with its Member Societies, IUTOX has learned that an area of high interest among many members is to identify the means with which to recognize the thousands of toxicologists working in every corner of the world. With a clear mandate from the Members Societies, the IUTOX Executive Committee established a Toxicology Recognition Task Force (TRTF) and named Dr. Lewis Smith as Chair of the TRTF.

Certified toxicologists as experts for hazard assessment

DABT : Diplomat of American Board of Toxicology (USA)
DJSOT: Diplomat of Japanese Society of Toxicology (Japan)
ERT: European Registered Toxicologist (EU)
ATS: Fellow of the American Toxicological Society (USA)
DKBT: Diploma, Korean Board of Toxicology (Korea)
Expert in Toxicology, DGPT: sponsored by the German Society of Experimental and Clinical Pharmacology and Toxicology (Germany)
UK Register of Toxicologists: sponsored by the Society of Biology and the British Toxicology Society (United Kingdom)
DCST: Diplomat of the Chinese Society of Toxicology (China)