Comparative Studies on Pharmacopoeial Definitions,

 Requirements and Information for Crude Drugs among FHH Member Countries in 2007(Reorganized edition with explanatory notes of tables)

The Sub-Committee I of the Western Pacific Regional Forum for the Harmonization of Herbal Medicines (FHH)

April 2011

Preface

The Sub-Committee I meeting of the Western Pacific Regional Forum for the Harmonization of Herbal Medicines (FHH) on nomenclature and standardization was held at National Institute of Health Sciences, Tokyo, Japan, on 21-23 May. Representatives attended it from China, Hong Kong (China), Japan, Republic of Korea, Singapore and Vietnam.

In the meeting the all participants recognized the importance of comparison on descriptions for herbal medicines in member party's pharmacopoeias or monograph standards as first step for the harmonization of nomenclature and standardization, and agreed to set up five expert working groups (EWG) for specific tasks as follows:

1. Nomenclature (Head: Eiji Sakai): The task was to prepare a comparison table on names of medicinal plant materials in CP, JP, KP and VP.
2. Testing Method in Monographs (Head: Nobuo Kawahara): The task was to list out the testing methods in monographs. The priority should be given to those medicinal plant materials appeared in all related four pharmacopoeias.
3. List of Chemical Reference Standards (CRS) and Reference of Medicinal Plant Materials (RMPM). (Head: Hiroyuki Fuchino: The task was to prepare a list of CRS and RMPM available in member parties.
4. List of Analytically Validated Method (Head: Yukihiro Goda): The task was to prepare a list of analytically validated methods in CP, JP, KP and VP.
5. Information on General Test (Head: Keum-ryon Ze, Jim-Sook Kim): The task was to collect information on general testing methodology on contamination such as pesticides, insecticides, herbicides, toxic metals and de-colouring agent in all member parties and to draft a report on testing methodology on contamination of different types of contaminants.

Until August of 2007, the EWG members made a lot of efforts to fulfill the task described above. Almost all of the comparative tables or lists were available.

At the Standing Committee meetings in Tokyo (2005 and 2006), the Sub-Committee I reported the data collected and prepared by the EWGs. This publication was compiled one of the reported data with additional information.

The purpose of the publication entitled as "Comparative Studies on Pharmacopoeial Definitions, Requirements and Information for Crude Drugs among FHH Member Countries in

2007" is primary to promote harmonization in the use of herbal medicines. The fist step of the harmonization is the mutual understanding of regulating system among member parties and Pharmacopoeia is the basis of the drug regulation. Therefore, we strongly expect that the publication will help the FHH members to achieve common consensus on herbal medicines.

The convenor of the Sub-Committee I
 Motoyoshi SATAKE (Chair)
 Yukihiro GODA

Edited by
Nobuo KAWAHARA

Content

Introduction 1
Section 1. Table 1-3 complied by expert working groups (EWG) I for Nomenclature 3
1 Comparative table on names of crude drugs in JP, CP, KP and VP 5
2 Comparative table on description of crude drugs in JP, CP, KP and VP 23
3 Comparative table on English titles and part of use of crude drugs in JP, CP, KP and VP 31
Section 2. Table 4-6 complied by EWG II for Testing Method in Monographs 39
4 Comparative table on testing methods and specification values for crude drugs in CP, JP, KP and VP 41
5 Comparative table on TLC conditions of identification for crude drugs in CP, JP, KP and VP 51
6 Comparative table on assay conditions for crude drugs in CP, JP, KP and VP 59
Section 3. Table 7-13 complied by EWG III for Lists of CRS and RMPM 65
7 List of CRS in Japanese pharmacopoeia 67
8 List of reference sample in JP 71
9 List of CRS in Korean Pharmacopoeia 77
10 List of CRS in Vietnamese Pharmacopoeia 83
11 List of Reference of Medicinal Plant Materials (RMPM) in CP 87
12 List of Reference of Medicinal Plant Materials (RMPM) in KP 93
13 List of Reference of Medicinal Plant Materials (RMPM) in VP 97
Section 4. Table 14-15 complied by EWG IV for Analytically Validated Methods 101
14 Analytically validated chemical assay, identification test and purity test for herbal materials in JP15 103
15 Analytically validated chemical assay or purity test for herbal materials in KP 107
Section 5. Table 16 complied by EWG V for Information on General Test 111
16 Comparative table on general testing methods for crude drugs in JP, KP, CP and VP 113
Acknowledgments 125

Introduction

This project was completed by the Sub-Committee I of the Western Pacific Regional Forum for the Harmonization of Herbal Medicines (FHH) in Japan in August 2007, which aimed to compare the nomenclature and testing method of each monograph of crude drug recorded in Chinese Pharmacopoeia (CP), Japanese Pharmacopoeia (JP), Korean Pharmacopoeia (KP) and Vietnamese Pharmacopoeia (VP), to list reference information from CP, JP, KP and VP including Chemical Reference Standards (CRS) and Reference of Medicinal Plant Materials (RMPM), to provide other information relating to the crude drugs recorded in CP, JP, KP and VP such as analytically validated methods and general test methodology, and, therefore, to promote harmonization of crude drugs recorded in CP, JP, KP and VP.

Since this project was conducted in Japan, except for JP, of which Japanese version was used, the versions of the other three pharmacopoeias used are in English. The full name and version number of all these four pharmacopoeias are listed as follows:

CP: Pharmacopoeia of the People's Republic of China (2005 edition, English version);
JP: The Japanese Pharmacopoeia (15th edition, 2006, Japanese version);
KP: The Korean Pharmacopoeia (8th edition, 2003, English version);
VP: Vietnamese Pharmacopoeia (3rd edition, 2005, English version)
Apart from JP, Non-JP Crude Drug Standards (Non-JPS, the Japanese Herbal Medicine Codex, Japanese version) was also used as a reference for information presented in this document from Japan. Non-JPS is a notification of the director of Pharmaceuticals and Cosmetics division, Pharmaceutical Affairs Bureau, Ministry of Health and Welfare in 1989, while JP is a ministerial notification.

Five expert working groups (EWGs) were set up for this project, which are EWG I for Nomenclature, EWG II for Testing Method in Monographs, EWG III for lists of CRS and RMPM, EWG IV for Analytically Validated Methods, and EWG V for Information on General Test. In total, 16 comparative tables are published in this document.

In addition, FHH Sub-Committee I will continue working for the update of this document. The work for the renewal of the comparison tables presented this document will commence after the publishing of JP 16th edition and the English version of CP 2010 edition.

Comparison tables can be downloaded via FHH website (http://www.fhhm.net/) or Japan National Institute of Health Sciences (NIHS) website (http://www.nihs.go.jp/dpp/FHH/FHH.htm).

Section 1

Table 1-3 complied by EWG I for Nomenclature

Table 1 to 3 are comparative tables on nomenclature compiled by EWG I. Table 1 is the Comparative table on names of crude drugs in JP (the total number of crude drugs recorded in JP is 197), CP (551 crude drugs), KP (121 crude drugs) and VP (209 crude drugs). In total, 106 monographs are presented in Table 1, which are common crude drugs using the same plant source among more than three pharmacopoeias.

The first 57 monographs (serial number: SN 1-57 in Table 1) are crude drugs using the same plant source among four pharmacopoeias, and the next 49 (SN 58-106) are crude drugs using the same plant source among any of the three pharmacopoeias.

In addition, crude drugs in Table 1 (SN 1-57), using the same plant source in four pharmacopoeias, can be classified into three patterns according to the plant species defined by each pharmacopoeia. Three patterns are present as follows.

Pattern	Description	Example	Crude herbs
I	27 crude drugs use completely the same plant species among four pharmacopoeias	Poria cocos is the only botanical species name used for the crude drug Poria	Alismatis Rhizoma, Alpiniae Fructus, Alpiniae Fructus, Anemarrhenae Rhizoma, Atractylodis Lanceae Rhizoma, Carthami Flos, Corni Fructus, Curcumae Rhizoma, Eucommiae Cortex, Logan Arillus, Foeniculi Fructus, Fritillariae Bulbus, Gardeniae Fructus, Leonuri Herba, Myristicae Semen, Nelumbis Semen, Notpterygii Rhizoma, Moutan Cortex, Ginseng Radix, Platycodi Radix, Pogostemoni Herba, Polyporus, Poria, Persicae Semen, Scutelariae Radix, Strychni Semen, Zizyphi Fructus, Zizyphi Semen.
II	26 crude drugs use the same plant species as the original plant among four pharmacopoeias, while other additional species is defined in one, two or three pharmacopoeia(s)	Glycyrrhiza uralensis and G. glabra are the original plant species defined in four pharmacopoeias for Glycyrrhizae Radix, while G. inflata is defined in CP and VP only	Achyrantis Radix, Processi Aconii Radix, Angelicae Dahuricae Radix, Astragali Radix, Atractylodis Rhizoma, Bupleuri Radix, Cimicifugae Rhizoma, Cinnamoni Cortex, Cyperi Rhizoma, Ephedrae Herba, Ehimedii Herba, Evodiae Fructus, Forsythiae Fructus, Glycyrrhizae Radix, Lonicerae Flos, Magnoliae Cortex, Mori Cortex, Paeoniae Radix, Polygonathi Rhizoma, Armeniacae Semen, Rhei Rhizoma, Sshisandrae Fructus, Caryophylli Flos, Trichosanthis Radix, Trichosanthis Semen, Zingiberis Rhizoma
III	3 crude drugs use the same botanical name at the level of species name among four pharmacopoeias, while subspecies name is defined in one, two or three pharmacopoeia(s)	Coix lacryma-jobi var. mayuen is defined in JP, CP and KP for Coicis Semen, while C. lacryma-jobi is defined in VP only	Coicis Semen, Imperata Rhizoma, Prunellae Spica

[^0] to distinguish two species (i.e. Mentha arvensis var. piperascens and M. haplocalyx) described in four pharmacopoeias.

Crude drugs（SN 58－106）using the same plant source included in any of the three pharmacopoeias can be categorised into five groups as follows．

Group	Description	Crude herbs
I	25 crude drugs use the same botanical name and are recorded in JP，CP and VP	Aloe，Alpiniae Officinari Rhizoma，Angelicae Pubescentis，Arctii Fructus，Arecae Pericarpium，Asteris Radix，Sappan Lignum， Chrysanthemi Flos，Aurantii Fructus Immaturus，Clematidis Radix， Cnidii Monnieris Fructus，Kaki Calys，Eriobotrayae Folium， Houttuyniae Herba，Linderae Radix，Lycii Cortex，Perilae Fructus， Peucedani Radix，Mume Fructus，Rehmanniae Radix，Saussureae Radix，Smilacis Rhizoma，Chebulae Fructus，Tribuli Fructus， Viticis Fructus
II	16 crude drugs use the same botanical name and are recorded in JP，CP and KP	Akebiae Caulis，Arecae Semen，Sennae Folium，Crataegi Fructus， Crocus，Dioscoreae Rhizoma，Gentianae Scabrae Radix，Pharbitidis Semen，Phellodendri Cortex，Plantaginis Semen，Polygalae Radix， Puerariae Radix，Saposhnikoviae Radix，Schizonepetae Spica， Sphorae Radix，Sophorae Flos
III	2 crude drugs use the same botanical name and are recorded in CP，KP and VP	Piperis Nigri Fructus，Slavae Miltiorrhizae Radix
IV	2 crude drugs use the same botanical name and are recorded JP，KP and VP	Zedoariae Rhizoma，Geranii Herba
V	4 crude drugs are recorded in all four pharmacopoeias，but the same plant sources are only defined in three pharmacopoeia（see the following note）	Arisaematis Tuber，Cassiae Semen，Lycii Fryctus，Scrophulariae Radix
Note：Examples of Group V：for crude herb Cassiae Semen，Cassia obtusifolia is defined in JP CP and KP，while C．tora is defined in JP CP and VP；for crude herb Scrophulariae Radix，Scrophularia buergeriana is defined in JP，KP and VP，while S． ningpoensis is defined in JP，CP and VP．		

Table 2 is the Comparative table on description of crude drugs in JP，CP，KP and VP， which includes 30 crude drugs．All these 30 crude drugs are recorded in four pharmacopoeias （i．e．as part of crude drugs $\mathrm{SN} 1-57$ in Table 1）and with available information on the description of crude drugs provided by all of the four pharmacopoeias．The information on description includes names of crude herbs in original language of each country（e．g．Poria as ブ クリョウ in JP，茯苓 in CP，복령 in KP and Phục linh／Bạch linh in VP），Latin title，size of crude drug（i．e．length，diameter，width and thickness），and whether or not the data of magnifying glass and microscope are specified for each drug．

Table 3 is the Comparative table on English titles and part of use of crude drugs in JP，CP， KP and VP，which is a continuous table of Table 2．Additional descriptions of 30 drugs included in Table 2 are presented．The information on description includes English title and plant part used．

Table 1

Comparative table on names of crude drugs in JP, CP, KP and VP

Comparative table on names of crude drugs in JP, CP, KP and VP

	JP15	CP2005	KP8	VP3
1	ACHYRANTHIS RADIX	RADIX ACHYRANTHIS BIDENTATAE	ACHYRANTHIS RADIX	RADIX ACHYRANTHIS BIDENTATAE
	Achyranthes fauriei Leveille et Vaniot	Achyranthes bidentata B1.	Achyranthes fauriei Leveille et	Achyranthes bidentata Blume
	Achyranthes bidentata Blume		Achyranthes bidentata Blume	
2	PROCESSI ACONII RADIX	RADIX ACONITI LATERALIS PREPARATA	ACONITI LATERALIS RADIX PREPARATA	RADIX ACONITI LATERALIS PRAEPARATA
	Aconitum carmichaeli Debeaux	Aconitum carmichaeli Debx.	Aconitum carmichaeli Debeaux	Aconitum carmichaeli Debx.
	Aconitum japonicum Thunberg			
3	ALISMATIS RHIZOMA	RHIZOMA ALISMATIS	ALISMATIS RHIZOMA	RHIZOMA ALISMATIS
	Alisma orientale Juzepczuk	Alisma orientalis (Sam.) Juzep.	Alisma orientale Juzepczuk	Alisma Plantago-aquatica L. var. orientale (Sammuels) Juzep.
4	ALPINIAE FRUCTUS	FRUCTUS ALPINIAE	ALPINIAE FRUCTUS	FRUCTUS ALPINAE
	Alpinia oxyphylla Miquel	Alpinia oxyphyll a Miq.	Alpinia oxyphylla Miquel	Alpinia oxyphylla Miq.
5	ANEMARRHENAE RHIZOMA	RHIZOMA ANEMARRHENAE	ANEMARRHENAE RHIZOMA	RHIZOMA ANEMARRHENAE
	Anemarrhena asphodeloides Bunge	Anemarrhena asphodeloides Bge.	Anemarrhena asphodeloides Bunge	Anemarrhena asphodeloides Bge.
6	ANGELICAE DAHURICAE RADIX	RADIX ANGELICA DAHURICAE	ANGELICAE DAHURICAE RADIX	RADIX ANGELICAE DAHURICAE
	Angelica dahurica Bentham et Hooker	Angelica dahurica (Fisch. ex Hoffm.) Benth. et Hook. f.	Angelica dahurica Bentham et Hooker	Angelica dahurica (Fisch. ex Hoffm.) Benth. et Hook. f.
		Angelica dahurica (Fisch. ex Hoffm.) Benth. et Hook. f. var. formosana (Boiss.) Shan et Yuan		Angelica dahurica (Fisch. ex Hoffm.) Benth. et Hook. f. var. formosana (Boiss) Shan et Yuan
7	ASTRAGALI RADIX	RADIX ASTRAGALI	ASTRAGALI RADIX	RADIX ASTRAGALI MEMBRANACI
	Astragalus membranaceus Bunge	Astragalus membranaceus (Fisch.) Bge. var. mongholicus (Bge.) Hsiao	Astragalus membranaceus Bunge	Astragalus membranaceus (Fisch.) Bge. var. mongholicus (Bge) Hsiao
	Astragalus mongholicus Bunge	Astragalus membranaceus (Fisch.) Bge.		Astragalus membranaceus (Fisch.)

Comparative table on names of crude drugs in JP, CP, KP and VP

	JP15	CP2005	KP8	VP3
8	ATRACTYLODIS RHIZOMA	RHIZOMA ATRACTYLODIS MCROCEPHALAE	ATRACTYLODIS RHIZOMA ALBA	RHIZOMA ATRACTYLODES MACROCEPHALAE
	Atractylodes japonica Koidzumi ex Kitamura	Atractylodes macrocephala Koidz.	Atractylodes japonic a Koidzumi ex Kitamura	Atractylodes macrocephala Koidz.
	Atractylodes ovata De Candolle		Atractylodes ovata De Candole	
9	ATRACTYLODIS LANCEAE RHIZOMA	RHIZOMA ATRACTILODIS	ATRACTYLODIS RHIZOMA	RHIZOMA ATRACTYLODIS
	Atractylodes lance a De Candolle	Atractylodes lancea (Thunb.) DC.	Atractylodes lancea De Candolle	Atractylodes lancea Thunb.
	Atractylodes chinensis Koidzumi	Atractylodes chinensis (DC.) Koidz.	Atractylodes chinensis Koidzumi	Atractylodes chinensis (DC.) Koidz
10	BUPLEURI RADIX	RADIX BUPLEURI	BUPLEURI RADIX	RADIX BUPLEURI
	Bupleurum falcatum Linne	Bupleurum chinense DC.	Bupleurum falcatum Linne	Bupleurum chinense DC.
		Bupleurum scorzonerifolium Willd.	or varieties	Bupleurum scorzonerifolium Willd.
11	CARTHAMI FLOS	FLOS CARTHAMI	CARTHAMI FLOS	FLOS CARTHMI TINCTORII
	Carthamus tinctorius Linne	Carthamus tinctorius L.	Carthamus tinctorius Linne	Carthamus tinctorius L.
12	CIMICIFUGAE RHIZOMA	RHIZOMA CIMICIFUGAE	CIMICIFUGAE RHIZOMA	RHIZOMA CIMICIFUGAE
	Cimicifuga simplex Wormskjord	Cimicifuga heracleifolia Kom.	Cimicifuga heracleifolia Komarov	Cimicifuga heracleifolia Kom.
	Cimicifuga dahurica (Turcz.)	Cimicifuga dahurica (Turcz.) Maxim.	other	Cimicifuga dahurica (Turcz.) Maxim.
	Cimicifuga foetida Linne	Cimicifuga foetida L.		Cimicifuga foetida L.
	Cimicifuga heracleifolia Komarov			
13	CINNAMOMI CORTEX	CORTEX CINNAMOMI	CINNAMOMI CORTEX	CORTEX CINNAMOMI
	Cinnamomum cassia Blume	Cinnamomum cassia Presl	Cinnamomum cassia Blume	Cinnamomum cassia Presl.
			other	Cinnamomum spp.
14	COICIS SEMEN	SEMEN COICIS	COICIS SEMEN	SEMEN COICIS
	Coix lacryma-jobi Linne var. ma-yuen Stapf	Coix lacryma-jobi L. var. ma-yuen (Roman.) Stapf	Coix lachryma-jobi Linne var. mayuen Stapf	Coix lachryma-Job i L.

Comparative table on names of crude drugs in JP, CP, KP and VP

	JP15	CP2005	KP8	VP3
15	CORNI FRUCTUS	FRUCTUS CORNI	CORNI FRUCTUS	FRUCTUS CORNI
	Cornus offcinalis Siebold et Zuccarini	Cornus officinalis Sieb. et Zucc.	Cornus officinalis Siebold et	Cornus officinalis Sieb. et Zucc.
16	CURCUMAE RHIZOMA	RHIZOMA CURUCUMAE LONGAE	CURCUMAE LONGAE RADIX	RHIZOMA CURCUMAE LONGAE
	Curcuma longa Linne	Curcuma longa L.	Curcuma longa Linne	Curcuma longa L.
17	CYPERI RHIZOMA	RHIZOMA CYPERI	CYPERI RHIZOMA	RHIZOMA CYPERI
	Cyperus rotundus Linne	Cyperus rotundus L.	Cyperus rotundus Linne	Cyperus rotundus L.
				Cyperus stoloniferus Retz.
18	EPHEDRAE HERBA	HERBA EPHEDRAE	EPHEDRAE HERBA	HERBA EPHEDRAE
	Ephedra sinica Stapf	Ephedra sinica Stapf	Ephedra sinica Stapf	Ephedra sinica Staff.
	Ephedra intermedia Schrenk et C. A.	Ephedra intermedia Schrenk et C. A.	other	Ephedra equisetina Bunge.
	Ephedra equisetina Bunge	Ephedra equisetina Bge.		Ephedra intermedia Schrenk. et C. A. Meyer
19	EPIMEDII HERBA	HERBA EPIMEDII	EPIMEDII HERBA	HERBA EPIMEDII
	Epimedium pubescens Maximowicz	Epimedium brevicornum Maxim.	Epimedium koreanum Nakai	Epimedium brevicornum Maxim.
	Epimedium brevicornum Maximowicz	Epimedium sagittatum (Sieb. et Zucc.) Maxim.	other	Epimedium sagittatum (Sieb. et Zucc.) Maxim
	Epimedium wushanense T. S. Ying	Epimedium pubescens Maxim.		Epimedium pubescens Maxim.
	Epimedium sagittatum Maximowicz	Epimedium wushanense T. S. Ying		Epimedium koreanum Nakai
	Epimedium koreanum Nakai	Epimedium koreanum Nakai		Epimedium wushanense T.S. Ying
	Epimedium grandiflorum Morren ver. thunbergianum Nakai			
20	EUCOMMIAE CORTEX	CORTEX EUCOMMIAE	EUCOMMIAE CORTEX	CORTEX EUCOMMIAE
	Eucommia ulmoides Oliver	Eucommia ulmoides Oliv.	Eucommia ulmoides Oliver	Eucommia ulmoides Oliv.
21	LONGAN ARILLUS	ARILLUS LONGAN	LONGANAE ARILLUS	ARILLUS LONGAN
	Euphoria longana Lamarck	Dimocarpus longan Lour.	Dimorcapus longan Lour.	Dimocarpus longan Lour.

	JP15	CP2005	KP8	VP3
22	EVODIAE FRUCTUS	FRUCTUS EVODIAE	EVODIAE FRUCTUS	FRUCTUS EUODIAE RUTAECARPAE
	Evodia rutaecarpa Bentham	Evodia rutaecarpa (Juss.) Benth.	Evodia rutaecarpa Bentham	Euodia rutaecarpa Hemsl. et Thoms.
	Evodia officinalis Dode	Evodia rutaecarpa (Juss.) Benth. var. officinalis (Dode) Huang	Evodia officinalis Dode	
	Evodia bodinieri Dode	Evodia rutaecarpa (Juss.) Benth. var. bodinieri (Dode) Huang		
23	FOENICULI FRUCTUS	FRUCTUS FOENICULI	FOENICULI FRUCTUS	FRUCTUS FOENICULI
	Foeniculum vulgare Miller	Foeniculum vulgare Mill.	Foeniculum vulgare Miller	Foeniculum vulgare Mill.
24	FORSYTHIAE FRUCTUS	FRUCTUS FORSYTHIAE	FORSYTHIAE FRUCTUS	FRUCTUS FORSYTHIAE
	Forsythia suspensa Vahl	Forsythia suspensa (Thunb.) Vahl	Forsythia suspensa Vahl	Forsythia suspensa Vahl.
	Forsythia viridissima Lindley		Forsythia koreana Nakai	
			Forsythia viridissima Lindley	
25	FRITILLARIAE BULBUS	BULBUS FRITILLAIAE THUNBERGII	FRITILLARIAE THUNBERGII BULBUS	BULBUS FRITILLARIAE THUNBERGII
	Fritillaria verticillata Willdenow var. thunbergii Baker	Fritillaria thunbergii Miq.	Fritillaria thunbergii Miquel	Fritillaria thunbergii Miq.
			other	
26	GARDENIAE FRUCTUS	FRUCTUS GARENIAE	GARDENIAE FRUCTUS	FRUCTUS GARDENIAE
	Gardenia jasminoides Ellis	Gardenia jasminoides Ellis	Gardenia jasminoides Ellis	Gardenia jasminoides Ellis
27	GLYCYRRHIZAE RADIX	RADIX GLYCYRRHIZAE	GLYCYRRHIZAE RADIX	RADIX GLYCYRRHIZAE
	Glycyrrhiza uralensis Fisher	Glycyrrhiza uralensis Fisch.	Glycyrrhiza uralensis Fischer	Glycyrrhiza uralensis Fisch.
	Glycyrrhiza glabra Linne	Glycyrrhiza inflata Bat.	Glycyrrhiza glabra Linne	Glycyrrhiza inflata Bat.
		Glycyrrhiza glabra L.		Glycyrrhiza glabra L.

	JP15	CP2005	KP8	VP3
28	IMPERATA RHIZOMA	RHIZOMA IMPERATAE	IMPERATAE RHIZOMA	RHIZOMA IMPERATAE CYLINDRICAE
	Imperata cylindrica Beauvois	Imperata cylindrica Beauv. var. major (Nees) C. E. Hubb.	Imperata cylindrica Beauvois	Imperata cylindrica P. Beauv
29	LEONURI HERBA	HERBA LEONURI	LEONURI HERBA	HERBA LEONURI JAPONICI
	Leonurus sibiricus Linne (Leonurs japonicus Houttuyn)	Leonurus japonicus Houtt.	Leonurus sibiricus Linne	Leonurus japonicus Houtt.
30	LONICERAE FLOS	FLOS LONICERAE JAPONICA	LONICERAE FLOS	FLOS LONICERAE
	Lonicera japonica Thunberg	Lonicera japonica Thunb.	Lonicera japonica Thunberg	Lonicera japonica Thunb.
				Lonicera dasystyla Rehd.
				Lonicara confusa DC.
				Lonicera cambodiana Pierre
31	MAGNOLIAE CORTEX	CORTEX MAGNOLIAE OFFICINALIS	MAGNOLIAE CORTEX	CORTEX MAGNOLIAE OFFICINALIS
	Magnolia obovata Thunberg	Magnolia officinalis Rehd. et Wils.	Magnolia ovobata Thunberg	Magnolia officinalis Rehd. et Wils. var. biloba Rehd. et Wils.
	Magnolia officinalis Rehder et Wilson	Magnolia officinalis Rehd. et Wils. var. biloba Rehd. et Wils.	Magnolia officinalis Rehder et Wilson	
	Magnolia officinalis Rehder et Wilson var. biloba Rehder et Wilson		Magnolia officinalis Rehder et Wilson var. biloba Rehder et Wilson	
32	MENTHAE HERBA	HERBA MENTHAE	MENTHAE HERBA	HERBA MENTHAE ARVENSIS
	Mentha arvensis Linne var. piperascens Malinvaud	Mentha haplocalyx Briq.	Mentna arvensis Linne var. piperascens Malinvaud	Mentha arvensis L.
33	MORI CORTEX	CORTEX MORI	MORI CORTEX RADICIS	CORTEX MORI ALBAE RADICIS
	Morus alba Linne	Morus alba L.	Morus alba Linne	Morus alba L.
			other	

	JP15	CP2005	KP8	VP3
34	MYRISTICAE SEMEN	SEMEN MYRISTICAE	MYRISTICAE SEMEN	SEMEN MYRISTICAE
	Myristica fragrans Houttuyn	Myristica fragrans Houtt.	Myristica fragrans Houttuyn	Myristica fragrans Houtt.
35	NELUMBIS SEMEN	SEMEN NELUMBINIS	NELUMBINIS SEMEN	SEMEN NELUMBINIS
	Nelumbo nucifera Gaertner	Nelumbo nucifera Gaertn.	Nelumbo nucifera Gaertner	Nelumbo nucifera Gaertn.
36	NOTOPTERYGII RHIZOMA	RHIZOMA ET RADIX NOTOPTERYGII		RHIZOMA SEU RADIX NOTOPTERYGII
	Notopterygium incisum Ting ex H. T. Chang			
	Notopterygium forbesii Boissieu	Notopterygium forbesii Boiss.	Notopterygium forbesii Boissieu	Notopterygium forbesii Boiss.
37	PAEONIAE RADIX	RADIX PAEONIAE ALBA	PAEONIAE RADIX	RADIX PAEONIAE
	Paeonia lactiflora Pallas	Paeonia lactiflora Pall.	Paeonia lactiflora Pallas	Paeonia lactiflora Pall.
				Paeonia veitchii Lynch
38	MOUTAN CORTEX	CORTEX MOUTAN	MOUTAN CORTEX RADICIS	CORTEX PAEONIA SUFFURUTICOSAE
	Paeonia suffruticosa Andrews (Paeonia moutan Sims)	Paeonia suffruticosa Andr.	Paeonia suffruticosa Andrews (Paeonia moutan Sims)	Paeonia suffruticosa Andr.
39	GINSENG RADIX	RADIX GINSENG	GINSENG RADIX ALBA	RADIX GINSENG
	Panax ginseng C. A. Meyer (Panax schinseng Nees)	Panax ginseng C. A. Mey.	Panax ginseng C. A. Meyer	Panax ginseng C.A. Mey
40	PLATYCODI RADIX	RADIX PLATYCODI	PLATYCODI RADIX	RADIX PLATYCODI GRANDIFLORIA
	Platycodon grandiflorum A. De Candolle	Platycodon grandiflorum (Jacq.) A. DC.	Platycodon grandiflorum A. De Candolle	Platycodon grandiflorum (Jack.) A.DC.
41	POGOSTEMONI HERBA	HERBA POGOSTEMONIS	POGOSTEMONIS HERBA	HERBA POGOSTEMONIS
	Pogostemon cablin Bentham	Pogostemon cablin (Blanco) Benth.	Pogostemon cablin Bentham	Pogostemon cablin (Blanco) Benth.

Comparative table on names of crude drugs in JP, CP, KP and VP

	JP15	CP2005	KP8	VP3
42	POLYGONATI RHIZOMA	RHIZOMA POLYGONATI	POLYGONATI RHIZOMA	RHIZOMA POLYGONATI
	Polygonatum falcatum A. Gray	Polygonatum kingianum Coll. et Hemsl.	Polygonatum sibiricum Redoute	Polygonatum kingianum Coll. et
	Polygonatum sibiricum Redoute	Polygonatum sibiricum Red.	Polygonatum falcatum A. Gray	Polygonatum sibiricum Red.
	Polygonatum kingiamum Collett et	Polygonatum cyrtonema Hua	Polygonatum kingianum Coll. et	Polygonatum cyrtonema Hua.
	Polygonatum cyrtonema Hua			
43	POLYPORUS	POLYPORUS	POLYPORUS	POLYPORUS
	Polyporus umbellatus Fries	Polyporus umbellatus (Pers.) Fries	Polyporus umbellatus Fries	Polyporus umbellatus (Pers.) Fries
44	PORIA	PORIA	HOELEN	PORIA
	Poria cocos Wolf	Poria cocos (Schw.) Wolf	Poria cocos Wolf	Poria cocos (Schw.) Wolf
45	PRUNELLAE SPICA	SPICA PRUNELLAE	PRUNELLAE SPICA	SPICA PRUNELLAE
	Prunella vulgaris Linne var. lilacina Nakai	Prunella vulgaris L.	Prunella vulgaris Linne var. lilacina Nakai	Prunella vulgaris L.
46	ARMENIACAE SEMEN	SEMEN ARMENIACAE AMARUM	ARMENIACAE SEMEN	SEMEN ARMENIACAE AMARUM
	Prunus armeniaca Linne	Prunus armeniaca L. var. ansu Maxim.	Prunus armeniaca Linne	Prunus armeniaca L. var. ansu Maxim.
	Prunus armeniaca Linne var. ansu Maximowicz	Prunus sibirica L.	Prunus armeniaca Linne var. ansu Maximowicz	Prunus sibirica L.
		Prunus mandshurica (Maxim.) Koehne		Prunus mandshurica (Maxim.) Koehne
		Prunus armeniaca L.		Prunus armeniaca L.
47	PERSICAE SEMEN	SEMEN PERSICAE	PERSICAE SEMEN	SEMEN PRUNI
	Prunus persica Batsch	Prunus persica (L.) Batsch	Prunus persica Batsch	Prunus persica (L.) Batsch
	Prunus persica Batsch var. davidiana Maximowicz	Prunus davidiana (Carr.) Franch.	Prunus persica Batsch var. davidiana Maximowicz	Prunus davidian a (Carr.) Franch.

Comparative table on names of crude drugs in JP, CP, KP and VP

	JP15	CP2005	KP8	VP3
48	RHEI RHIZOMA	RADIX ET RHIZOMA RHEI	RHEI RHIZOMA	RHIZOMA RHEI
	Rheum palmatum Linne	Rheum palmatum L.	Rheum palmatum Linne	Rheum palmatum L.
	Rheum tanguticum Maximowicz	Rheum tanguticum Maxim. ex Balf.	Rheum coreanum Nakai	Rheum officinale Baillon
	Rheum officinale Baillon	Rheum officinale Baill.	Rheum tangticum Maximowicz	
	Rheum coreanum Nakai			
	their interspecific hybrids			
49	SCHISANDRAE FRUCTUS	FRUCTUS SCHISANDRAE CHINENSIS	SCHIZANDRAE FRUCTUS	FRUCTUS SCHISANDRAE
	Schisandra chinensis Baillon	Schisandra chinensis (Turcz.) Baill.	Schizandra chinensis baillon	Schisandra chinensis (Turcz.)Baill.
				Schisandra sphenanthera Rehd. et
50	SCUTELLARIAE RADIX	RADIX SCUTELLARIAE	SCUTELLARIAE RADIX	RADIX SCUTELLARIAE
	Scutellaria baicalensis Georgi	Scutellaria baicalensis Georgi	Scutellaria baicalensis Georgi	Scutellaria baicalensis Georgi
51	STRYCHNI SEMEN	SEMEN STRYCHNI	STRYCHNI SEMEN	SEMEN STRYCHNI
	Strychnos nux-vomica Linne	Strychnos nux-vomica L.	Strychnos nux-vomica Linne	Strychnos nux-vomica L.
52	CARYOPHYLLI FLOS	FLOS CARYOPHYLLI	CARYOPHYLLI FLOS	FLOS SYZYGII AROMATICI
	Syzygium aromaticum Merrill et Perry	Eugenia caryophyllata Thunb.	Syzygium aromaticum Merrill et Perry	Eugenia caryophyllus (C. Spreng.) Bull. et Harr.
	(Eugenia caryophyllata Thunberg)		(= Eugenia caryophyllata Thunberg)	Syn. Syzygium aromaticum (L.) Merill et L.M. Perry
53	TRICHOSANTHIS RADIX	RADIX TRICHOSANTHIS	TRICHOSANTHIS RADIX	RADIX TRICHOSANTHIS
	Trichosanthes kirilowii Maximowicz	Trichosanthes kirilowii Maxim.	Trichosanthes kirilowii	Trichosanthes kirilowii Maxim.
	Trichosanthes kirilowii Maximowicz var. japonicum Kitamura	Trichosanthes rosthornii Harms	Trichosanthes kirilowii Maximowicz var. japonica Kitamura	Trichosanthes japponica Regel
	Trichosanthes bracteata Voigt			

Comparative table on names of crude drugs in JP, CP, KP and VP

	JP15	CP2005	KP8	VP3
69	SAPPAN LIGNUM	LIGNUM SAPPAN		LIGNUM SAPPAN
	Caesalpinia sappan Linne	Caesalpinia sappan L.		Caesalpinia sappan L.
70	SENNAE FOLIUM	FOLIUM SENNAE	SENNAE FOLIUM	
	Cassia angustifolia Vahl	Cassia angustifolia Vahl	Cassia angustifolia Vahl	
	Cassia acutifolia Delile	Cassia acutifolia Delile	Cassia acutifolia Delile	
71	CASSIAE SEMEN	SEMEN CASSIAE	CASSIAE SEMEN	SEMEN CASSIAE TORAE
	Cassia obtusifolia Linne	Cassia obtusifolia L.	Cassia obtusifolia Linne	Cassia tora L.
	Cassia tora Linne	Cassia tora L.		
72	CHRYSANTHEMI FLOS	FLOS CHRYSANTHEMI INDICI		FLOS CHRYSANTHEMI INDICI
	Chrysanthemum morifolium Ramatulle	Chrysanthemum indicum L.		Chrysanthemum indicum L.
	Chrysanthemum indicum Linne			
73	AURANTII FRUCUTUS IMMATURUS	FRUCTUS AURANRII IMMATURUS		FRUCTUS AURANTII IMMATURUS
	Citrus aurantium Linne var. daidai	Citrus aurantium L.		Citrus aurantium L.
	Citrus aurantium Linne	cultivars		Citrus sinensis Osbeck.
	Citrus natsudaidai Hayata	Citrus sinensis Osbeck		
74	CLEMATIDIS RADIX	RADIX CLEMATIDIS		RADIX CLEMATIDIS
	Clematis chinensis Osbeck	Clematis chinensis Osbeck		Clematis chinensis Osbeck.
	Clematis manshurica Ruprecht	Clematis hexapetala Pall.		Clematis haxapetala Pall.
	Clematis hexapetala Pallas	Clematis manshurica Rupr.		Clematis manshurica Rupr.
75	CNIDII MONNIERIS FRUCTUS	FRUCTUS CNIDII		FRUCTUS CNIDII
	Cnidium monnieri Cusson	Cnidium monnieri (L.) Cuss.		Cnidium monnieri (L.) Cuss.

	JP15	CP2005	KP8	VP3
76	CRATAEGI FRUCTUS	FRUCTUS CRATAEGI	CRATAEGI FRUCTUS	
	Crataegus cuneata Siebold et Zuccarini	Crataegus pinnatifida Bge. var. major N. E. Br.	Crataegus pinnatifida Bunge var. typica Schneider	
	Crataegus pinnatifida Bunge var. major N. E. Brown	Crataegus pinnatifida Bge.	other	
77	CROCUS	STIGMA CROCI	CROCUS	
	Crocus sativus Linne	Crocus sativus L.	Crocus sativus Linne	
78	ZEDOARIAE RHIZOMA		ZEDOARIAE RHIZOMA	RHIZOMA CURUCUMAE ZEDOARIAE
	Curcuma zedoaria Roscoe		Curcuma zedoaria Roscoe	Curcuma zedoaria (Berg.) Roscoe
79	DIOSCOREAE RHIZOMA	RHIZOMA DIOSCOREAE	DIOSCOREAE RHIZOMA	
	Dioscorea japonica Thunberg	Dioscorea opposita Thunb.	Dioscorea japonica Thunberg	
	Dioscorea batatas Decaisne		Dioscorea batatas Decaisne	
80	KAKI CALYX	CALYX KAKI		
	Diospyros kaki Thunberg	Diospyros kaki Thunb.		Diospyros kaki L. f.
81	ERIOBOTRYAE FOLIUM	FOLIUM ERIOBOTRYAE		FOLIUM ERIOBOTRYAE JAPONICAE
	Eriobotrya japonica Lindley	Eriobotrya japonica (Thunb.) Lindl.		Eriobotrya japonica (Thunb.) Lindl.
82	GENTIANAE SCABRAE RADIX	RADIX GENTIANAE	GENTIANAE SCABRAE RADIX	RADIX GENTIANAE MACROPHYLLAE
	Gentiana scabra Bunge	Gentiana manshurica Kitag.	Gentiana scabra Buge	Gentiana macrophylla Pall.
	Gentiana manshurica Kitagawa	Gentiana scabra Bge.	other	Gentiana crassicaulis Duthie ex Burk.
	Gentiana triflora Pallas	Gentiana triflora pall.		Gentiana straminea Maxim.
		Gentiana rigescens Franch.		Gentiana dahurica Fisch.

Comparative table on names of crude drugs in JP, CP, KP and VP

	JP15	CP2005	KP8	VP3
83	GERANII HERBA		GERANII HERBA	HERBA GERANII THUNBERGII
	Geranium thunbergii Siboid et Zuccarini		Geranium thunbergii Siebold et Zuccarini	Geranium thunbergii Siebold et Zucc.
84	HOUTTUYNIAE HERBA	HERBA HOUTTUYNIAE		HERBA HOUTTUYNIAE CORDATAE
	Houttuynia cordata Thunberg	Houttuynia cordata Thunb.		Houttuynia cordata Thunb.
85	LINDERAE RADIX	RADIX LINDERAE		RADIX LINDERAE
	Lindera strychnifolia Fernandez- Villars	Lindera aggregata (Sims) Kosterm.		Lindera aggregata (Sims) Kosterm.
86	LYCII FRUCTUS	FRUCTUS LYCII	LYCII FRUCTUS	FRUCTUS LYCII
	Lycium chinense Miller	Lycium barbarum L.	Lycium chinense Miller	Lycium chinense Mill.
	Lycium barbarum Linne			Lycium barbarum L.
87	LYCII CORTEX	CORTEX LYCII		CORTEX LYCII
	Lycium chinense Miller	Lycium chinense Mill.		Lycium chinense Mill.
	Lycium barbarum Linne	Lycium barbarum L.		Lycium barbarum L.
88	PERILLAE FRUCTUS	FRUCTUS PERILLAE		FRUCTUS PERILLA
	Perilla frutescens Britton var. acuta	Perilla frutescens (L.) Britt.		Perilla frutescens (L.) Britt.
	other			
89	PEUCEDANI RADIX	RADIX PEUCEDANI		RADIX PEUCEDANI
	Peucedanum praeruptorum Dunn	Peucedanum praeruptorum Dunn		Peucedanum praeruptorum Dunn.
	Angelica decursiva Franchet et Savatier			Peucedanum decursivum Maxim.
90	PHARBITIDIS SEMEN	SEMEN PHARBITIDIS	PHARBITIDIS SEMEN	
	Pharbitis nil Choisy	Pharbitis nil (L.) Choisy	Pharbitis nil Choisy	
		Pharbitis purpurea (L.) Voigt		

	JP15	CP2005	KP8	VP3
91	PHELLODENDRI CORTEX	CORTEX PHELLODENDRI AMURENSIS	PHELLODENDRI CORTEX	CORTEX PHELLODENDRI
	Phellodendron amurense Ruprecht	Phellodendron amurense Rupr.	Phellodendron amurense Ruprecht	Phellodendron chinense Schneid.
	Phellodendron chinense Schneider		other	
92	PLANTAGINIS SEMEN	SEMEN PLANTAGINIS	PLANTAGINIS SEMEN	SEMEN PLANTAGINIS
	Plantago asiatica Linne	Plantago asiatica L.	Plantago asiatica Linne	Plantago major L.
		Plantago depressa Willd.		
93	POLYGALAE RADIX	RADIX POLYGALAE	POLYGALAE RADIX	RADIX POLYGALAE
	Polygala tenuifolia Willdenow	Polygala tenuifolia Willd.	Polygala tenuifolia Willdenow	Polygola sibrica L.
		Polygala sibirica L.		
94	MUME FRUCTUS	FRUCTUS MUME		FRUCTUS MUME PRAEPARATUS
	Prunus mume Siebold et Zuccarini	Prunus mume (Sieb.) Sieb. et Zucc.		Prunus mume Sieb. et Zucc.
95	PUERARIAE RADIX	RADIX PUERARIAE	PUERARIAE RADIX	RADIX PUERARIAE
	Pueraria lobata Ohwi	Pueraria lobata (Willd.) Ohwi	Pueraria lobata Ohwi	Pueraria thomsonii Benth.
96	REHMANNIAE RADIX	RADIX REHMANNIAE	REHMANNIAE RADIX PREPARATA	RADIX REHMANNIAE GLUTINOSAE
	Rehmannia glutinosa Liboschitz var. purpurea Makino	Rehmannia glutinosa Libosch.	Rehmannia glutinosa Libschitz var. purpurea Makino	Rehmannia glutinosa (Gaertn.) Libosch.
	Rehmannia glutinosa Liboschitz		other	
97	SAPOSHNIKOVIAE RADIX	RADIX SAPOSHNIKOVIAE	SAPOSHNIKOVIAE RADIX	
	Saposhnikovia divaricata Schischkin	Saposhnikovia divaricata (Turcz.)	Saposhnikovia divaricata Schiskin	
98	SAUSSUREAE RADIX	RADIX AUCKLANDIAE		RADIX SAUSSUREAE LAPPAE
	Saussurea lappa Clarke	Aucklandia lappa Decne.		Saussurea lappa Clarke
99	SCHIZONEPETAE SPICA	SPICA SCHIZONEPETAE	SCHIZONEPETAE SPICA	
	Schizonepeta tenuifolia Briquet	Schizonepeta tenuifolia Briq.	Schizomepeta tenuifolia Briquet	

Comparative table on names of crude drugs in JP, CP, KP and VP

	JP15	CP2005	KP8	VP3
100	SCROPHULARIAE RADIX	RADIX SCROPHULARIAE	SCROPHULARIAE RADIX	RADIX SCROPHULARIAE
	Scrophularia ningpoensis Hemsley	Scrophularia ningpoensis Hemsl.	Scrophularia buergeriana Miquel	Scrophularia buergeriana Miq.
	Scrophularia buergeriana Miquel			Scrophularia ningpoensis Hemsl.
101	SMILACIS RHIZOMA	RHIZOMA SMILACIS GLABRAE		RHIZOMA SMILACIS GLABRAE
	Smilax glabra Roxburgh	Smilax glabra Roxb.		Smilax glabra Roxb.
102	SOPHORAE RADIX	RADIX SOPHORAE FLAVESCENTIS	SOPHORAE RADIX	
	Sophora flavescens Ation	Sophora flavescens Ait.	Sophora flavescens Aiton	
103	SOPHORAE FLOS	FLOS SOPHORAE	SOPHORAE FLOS	
	Sophora japonica Linne	Sophora japonica L.	Sophora japonica Linne	
104	CHEBULAE FRUCTUS	FRUCTUS CHEBULAE		FRUCTUS TERMINALIAE CHEBULAE
	Terminalia chebula Retzius	Terminalia chebula Retz.		Terminalia chebula Retz.
		Terminalia chebula Retz. var. tomentella Kurt.		Terminalia chebula Retz. var. tomentella Kurt.
105	TRIBULI FRUCTUS	FRUCTUS TRIBULI		FRUCTUS TRIBULI TERRESTRIS
	Tribulus terrestris Linne	Tribulus terrestris L.		Tribulus terrestris L.
106	VITICIS FRUCTUS	FRUCTUS VITICIS		FRUCTUS VITICIS TRIFOLIAE
	Vitex rotundifolia Linne fil.	Vitex trifolia L. var. simplicifolia Cham.		Vitex trifolia L.
	Vitex trifolia Linne	Vitex trifolia L.		Vitex trifolia L. var. simplicifolia

Table 2

Comparative table on description of crude drugs in JP, CP, KP and VP

Comparative table on description of crude drugs in JP，CP，KP and VP

No．	Title		Latin title	length	diameter	width	thickness	magnifyi ng glass	microscope		
			powder						transverse		
1 Alisma orientale Juzepczuk											
	JP	タクシャ		ALISMATIS RHIZOMA	$3-8 \mathrm{~cm}$	$3-5 \mathrm{~cm}$				\bigcirc	
	CP	澤瀉	RHIZOMA ALISMATIS	$2-7 \mathrm{~cm}$	$2-6 \mathrm{~cm}$				\bigcirc		
	KP	택사	ALISMATIS RHIZOMA	$3-8 \mathrm{~cm}$	$3-5 \mathrm{~cm}$				\bigcirc		
	VP	Thiên nam tinh（Thân rễ）	RHIZOMA ALISMATIS	$1-2 \mathrm{~cm}$	$1.5-6.5 \mathrm{~cm}$				\bigcirc		
2 Alpinia oxyphylla Miquel											
	JP	ヤクチ	ALPINIAE FRUCTUS	$1-2 \mathrm{~cm}$	0．7－1cm						
	CP	益智	FRUCTUS ALPINIAE OXYPHYLLAE	$1.2-2 \mathrm{~cm}$	$1-1.3 \mathrm{~cm}$				\bigcirc	\bigcirc	
	KP	익지	ALPINIAE FRUCTUS	$1-2 \mathrm{~cm}$	$0.7-1 \mathrm{~cm}$						
	VP	İch trí（Quả）	FRUCTUS ALPINIAE OXYPHYLLAE	$1.2-2 \mathrm{~cm}$	$1-1.3 \mathrm{~cm}$				\bigcirc	\bigcirc	
3 Anemarrhena asphodeloides Bunge											
	JP	チモ	ANEMARRHENAE RHIZOMA	$3-15 \mathrm{~cm}$	$0.5-1.5 \mathrm{~cm}$			\bigcirc			
	CP	知母	RHIZOMA ANEMARRHENAE	$3-15 \mathrm{~cm}$	$0.8-1.5 \mathrm{~cm}$						
	KP	지모	ANEMARRHENAE RHIZOMA	$3-15 \mathrm{~cm}$	$0.5-1.5 \mathrm{~cm}$			\bigcirc			
	VP	Tri mẫu（Thân rễ）	RHIZOMA ANEMARRHENAE	$3-15 \mathrm{~cm}$	$0.8-1.5 \mathrm{~cm}$						
4 Carthamus tinctorius Linne											
	JP	コウカ	CARTHAMI FLOS	1 cm							
	CP	紅花	FLOS CARTHAMI	$1-2 \mathrm{~cm}$					\bigcirc		
	KP	홍화	CARTHAMI FLOS	1 cm							
	VP	Hồng hoa	FLOS CARTHAMI TINCTORII	$1-2 \mathrm{~cm}$					\bigcirc		
	JP	ヨクイニン	COICIS SEMEN	6 mm		5 mm		\bigcirc	\bigcirc		
	CP	薏药仁	SEMEN COICIS	$4-8 \mathrm{~mm}$		$3-6 \mathrm{~mm}$			\bigcirc		
	KP	산수유	COICIS SEMEN	6 mm		5 mm			\bigcirc		
	VP	Ŷ dĩ（Hạt）	SEMEN COICIS	$0.5-0.8 \mathrm{~cm}$	$0.2-0.5 \mathrm{~cm}$				\bigcirc	\bigcirc	
6 Cornus offcinalis Siebold et Zuccarini											
	JP	サンシュユ	CORNI FRUCTUS	$1.5-2 \mathrm{~cm}$		1 cm					
	CP	山茱蓢	FRUCTUS CORNI	$1-1.5 \mathrm{~cm}$	$0.5-1 \mathrm{~cm}$				\bigcirc		
	KP	산수유	CORNI FRUCTUS	$1.5-2 \mathrm{~cm}$		1 cm					
	VP	Sơn thù Quả sơn thù du	FRUCTUS CORNI OFFICINALIS	$1-1.5 \mathrm{~cm}$		$0.5-1 \mathrm{~cm}$			\bigcirc		

Comparative table on description of crude drugs in JP，CP，KP and VP

No．	Title		Latin title	length	diameter	width	thickness	magnifyi ng glass	microscope		
			powder						transverse section		
	JP	ウコン		CURCUMAE RHIZOMA	4 cm	3 cm					\bigcirc
	CP	姜黄	RHIZOMA CURUCUMAE LONGAE	$2-5 \mathrm{~cm}$	$1-3 \mathrm{~cm}$					\bigcirc	
	KP	강 황	CURCUMAE LONGAE RADIX	4 cm	3 cm						
	VP	Nghệ（Thân rễ）	RHIZOMA CURUCUMAE LONGAE	$2-5 \mathrm{~cm}$	$1-3 \mathrm{~cm}$				\bigcirc	\bigcirc	
8 Dimorcapus longan Lour．											
	JP	リュウガンニク	LONGAN ARILLUS	$1-2 \mathrm{~cm}$		1 cm					
	CP	竜眼肉	ARILLUS LONGAN	1.5 cm		$2-4 \mathrm{~cm}$				\bigcirc	
	KP	용안육	LONGANAE ARILLUS	$2-4 \mathrm{~cm}$		$1-2 \mathrm{~cm}$	$2-4 \mathrm{~mm}$				
	VP	Long nhãn	ARILLUS LONGAN	1.5 cm		$2-4 \mathrm{~cm}$	0.1 cm				
9 Eucommia ulmoides Oliver											
	JP	トチュウ	EUCOMMIAE CORTEX				2－6mm			\bigcirc	
	CP	杜仲	CORTEX EUCOMMIAE				$3-7 \mathrm{~mm}$		\bigcirc		
	KP	두충	EUCOMMIAE CORTEX				$3-7 \mathrm{~mm}$				
	VP	Đỗ trọng（Vỏ thân）	CORTEX EUCOMMIAE				0．2－0．5cm		\bigcirc	\bigcirc	
	JP	ウイキョウ	FOENICULI FRUCTUS	$3.5-8 \mathrm{~mm}$		$1-2.5 \mathrm{~mm}$			\bigcirc	\bigcirc	
	CP	小茴香	FRUCTUS FOENICULI	$4-8 \mathrm{~mm}$	$1.5-2.5 \mathrm{~mm}$					\bigcirc	
	KP	회향	FOENICULI FRUCTUS	$3-8 \mathrm{~mm}$		$1-3 \mathrm{~mm}$				\bigcirc	
	VP	Tiểu hồi（Quả）	FRUCTUS FOENICULI	8 mm	1．5－2．5nn				\bigcirc	\bigcirc	
	JP	バイモ	FRITILLARIAE BULBUS	$1-2 \mathrm{~cm}$	$2-3 \mathrm{~cm}$					\bigcirc	
	CP	浙貝母	BULBUS FRITILLAIAE THUNBERGII	$1-2 \mathrm{~cm}$	$2-3.5 \mathrm{~cm}$				\bigcirc		
	KP	패모	FRITILLARIAE THUNBERGII BULBUS	$1-2 \mathrm{~cm}$	$2-3.5 \mathrm{~cm}$						
	VP	Triết bối mẫu	BULBUS FRITILARIAE THUNBERGII	$1-2 \mathrm{~cm}$	$2-3.5 \mathrm{~cm}$				\bigcirc		
12 2 Gardenia jasminoides Ellis											
	JP	サンシシ	GARDENIAE FRUCTUS	$1-5 \mathrm{~cm}$		$1-1.5 \mathrm{~cm}$			\bigcirc		
	CP	桭子	FRUCTUS GARDENIAE	$1.5-3.5 \mathrm{~cm}$	$1-1.5 \mathrm{~cm}$				\bigcirc		
	KP	치자	GARDENIAE FRUCTUS	$1-5 \mathrm{~cm}$		$1-1.5 \mathrm{~cm}$			\bigcirc		
	VP	Dành dành（Quả），Chi tử	FRUCTUS GARDENIAE	$2-4.5 \mathrm{~cm}$	$1-2 \mathrm{~cm}$				\bigcirc	\bigcirc	

Comparative table on description of crude drugs in JP, CP, KP and VP

Comparative table on description of crude drugs in JP, CP, KP and VP

Comparative table on description of crude drugs in JP，CP，KP and VP

No．	Title		Latin title	length	diameter	width	thickness	magnifyi ng glass	microscope		
			powder						transverse section		
25 Prunella vulgaris Linne var．lilacina Nakai											
	JP	カゴソウ		PRUNELLAE SPICA	$3-6 \mathrm{~cm}$	$1-1.5 \mathrm{~cm}$					
	CP	夏枯草	SPICA PRUNELLAE	$1.5-8 \mathrm{~cm}$	$0.8-1.5 \mathrm{~cm}$						
	KP	하고초	PRUNELLAE SPICA	$3-6 \mathrm{~cm}$	$1-1.5 \mathrm{~cm}$						
	VP	Hạ khô thảo（Cụm quả）	SPICA PRUNELLAE	$1.5-8 \mathrm{~cm}$	$0.8-1.5 \mathrm{~cm}$						
26 Scutellaria baicalensis Georgi											
	JP	オウゴン	SCUTELLARIAE RADIX	$5-20 \mathrm{~cm}$	$0.5-3 \mathrm{~cm}$				\bigcirc		
	CP	黄芩	RADIX SCUTELLARIAE	$8-25 \mathrm{~cm}$	$1-3 \mathrm{~cm}$				\bigcirc		
	KP	황련	SCUTELLARIAE RADIX	$5-20 \mathrm{~cm}$	$0.5-3 \mathrm{~cm}$				\bigcirc		
	VP	Hoàng cầm（Rễ）	RADIX SCUTELLARIAE	$8-25 \mathrm{~cm}$	$1-3 \mathrm{~cm}$				\bigcirc		
27 Strychnos nux－vomica Linne											
	JP	ホミカ	STRYCHNI SEMEN		$1-3 \mathrm{~cm}$		$0.3-0.5 \mathrm{~cm}$				
	CP	馬銭子	SEMEN STRYCHNI		$1.5-3 \mathrm{~cm}$		$0.3-0.6 \mathrm{~cm}$		\bigcirc		
	KP	호미카	STRYCHNI SEMEN		$1-3 \mathrm{~cm}$		$0.3-0.5 \mathrm{~cm}$				
	VP	Mã tiền（Hạt）	SEMEN STRYCHNI		$1.2-2.5 \mathrm{~cm}$		$0.4-0.6 \mathrm{~cm}$		\bigcirc	\bigcirc	
28 Zingiber officinale Roscoe											
	JP	ショウキョウ	ZINGIBERIS RHIZOMA	2－4cm	1－2cm				\bigcirc		
	CP	生姜	RHIZOMA ZINGIBERIS RECENS	$4-18 \mathrm{~cm}$			$1-3 \mathrm{~cm}$				
	KP	생 강	ZINGIBERIS RHIZOMA	$2-4 \mathrm{~cm}$	$1-2 \mathrm{~cm}$			\bigcirc	\bigcirc		
	VP	Gừng（Thân rễ）	RHIZOMA ZINGIBERIS	$3-7 \mathrm{~cm}$			$0.5-1.5 \mathrm{~cm}$		\bigcirc	\bigcirc	
29 Zizyphus jujuba Miller var．spinosa（Bunge）Hu ex H．F．Chou											
	JP	サンソウニン	ZIZYPHI SEMEN	5－9mm		$4-6 \mathrm{~mm}$	$2-3 \mathrm{~mm}$			\bigcirc	
	CP	酸棗仁	SEMEN ZIZIPHI SPINOSAE	$5-9 \mathrm{~mm}$		$5-7 \mathrm{~mm}$	3 mm		\bigcirc		
	KP	산조인	ZIZYPHI SEMEN	$6-9 \mathrm{~mm}$		$4-6 \mathrm{~mm}$	2－3mm				
	VP	$\begin{aligned} & \text { Táo (Hạt), Táo nhân, } \\ & \text { Toan táo nhân } \\ & \hline \end{aligned}$	SEMEN ZIZIPHI MAURITIANAE	$5-8 \mathrm{~mm}$		$4-6 \mathrm{~mm}$	$1-2 \mathrm{~mm}$		\bigcirc	\bigcirc	
30 Zizyphus jujuba Miller var．inermis Rehder											
		タイソウ	ZIZYPHI FRUCTUS	$2-3 \mathrm{~cm}$	$1-2 \mathrm{~cm}$						
		大雵	FRUCTUS JUJUBAE	$2-3.5 \mathrm{~cm}$	$1.5-2.5 \mathrm{~cm}$						
		대추	ZIZYPHI FRUCTUS	$2-3 \mathrm{~cm}$	$1-2 \mathrm{~cm}$						
		Đại táo	FRUCTUS ZIZYPHY JUJUBAE	$2-3.5 \mathrm{~cm}$	$1.5-2.5 \mathrm{~cm}$						

＊：KP is including other plants

Table 3

Comparative table on English titles and part of use of crude drugs in JP, CP, KP and VP

Comparative table on English titles and part of use of crude drugs in JP, CP, KP and VP

Comparative table on English titles and part of use of crude drugs in JP，CP，KP and VP

No．	Title	Latin title	English title	Use part	Removed
7 7 7 Curcuma longa Linne					
	JP ウコン	CURCUMAE RHIZOMA	Turmeric	Rhizoma	
	CP 姜黄	RHIZOMA CURUCUMAE LONGAE	Turmeric	Rhizoma	
	KP 강 황	CURCUMAE LONGAE RADIX	Curcuma Root	Radix	
	VP Nghệ（Thân rễ）	RHIZOMA CURUCUMAE LONGAE		Rhizoma	
8 Dimorcapus longan Lour．					
	JP リュウガンニク	LONGAN ARILLUS	Longan Pulp	aril	
	CP 竜眼肉	ARILLUS LONGAN	Longan Aril	aril	shell and nutlet
	KP 용안육	LONGANAE ARILLUS	Longan Arillus	arill	
	VP Long nhãn	ARILLUS LONGAN		aril	
9 Eucommia ulmoides Oliver					
	JP トチュウ	EUCOMMIAE CORTEX	Eucommia Bark	bark	
	CP 杜仲	CORTEX EUCOMMIAE	Eucommia Bark	stem bark	coarse outer layer
	KP 두충	EUCOMMIAE CORTEX	Eucommia Bark	stem bark	
	VP Đổ trọng（Vỏ thân）	CORTEX EUCOMMIAE		stem bark	
	JP ${ }^{\text {¢ }}$－	FOENICULI FRUCTUS	Fennel	fruit	
	CP 小茴香	FRUCTUS FOENICULI	Fennel	ripe fruit	
	KP 회향	FOENICULI FRUCTUS	Fennel	fruit	
	VP Tiếu hồi（Quả）	FRUCTUS FOENICULI		ripe fruit	
＊	JP バイモ	FRITILLARIAE BULBUS	Fritillaria Bulb	Bulbus	
	CP 浙貝母	BULBUS FRITILLAIAE THUNBERGII	Thunberg Fritillary Bulb	Bulbus	
	KP 패모	FRITILLARIAE THUNBERGII BULBU	Fritillaria Thunbergii Bulb	Bubl	
	VP Triết bối mẫu	BULBUS FRITILARIAE THUNBERGI		Bulbs	
	JP サンシシ	GARDENIAE FRUCTUS	Gardeni Fruit	fruit	
	CP 栕子	FRUCTUS GARDENIAE	Cape Jasmine Fruit	ripe fruit	fruit stalk
	KP 치자	GARDENIAE FRUCTUS	Gardeni Fruit	fruit	
	VP Dành dành（Quả），Chi tử	FRUCTUS GARDENIAE		ripe fruit	

Comparative table on English titles and part of use of crude drugs in JP, CP, KP and VP

Comparative table on English titles and part of use of crude drugs in JP, CP, KP and VP

Comparative table on English titles and part of use of crude drugs in JP, CP, KP and VP

Comparative table on English titles and part of use of crude drugs in JP, CP, KP and VP

No.		Title	Latin title	English title	Use part	Removed
30 Zizyphus jujuba Miller var. inermis Rehder						
			ZIZYPHI FRUCTUS	Jujube	fruit	
	CP	大棗	FRUCTUS JUJUBAE	Chinese Date	ripe fruit	
	KP	대추	ZIZYPHI FRUCTUS	Jujube	fruit	
	VP	Đại táo	FRUCTUS ZIZYPHY JUJUBAE		ripe fruit	

*:KP is including other plants

Section 2

Table 4-6 complied by EWG II for Testing Method in Monographs

Table 4 to 6 are comparative tables on testing methods used in each monograph compiled by EWG II.

Table 4 is the Comparative table on testing methods and specification values for crude drugs in CP, JP, KP and VP, which includes 106 crude drugs. All these 106 crude drugs are the same as that included in Table 1 (i.e. crude drug SN 1-106). This table provides a summary of testing methods and specification values described in each monograph from each pharmacopoeia. Summarized information includes identification test, purification test, data on loss on drying, total ash and acid insoluble ash, extract content, and data on assay including essential oil content.

Table 5 is the Comparative table on thin-layer chromatography (TLC) condition of identification for crude drugs in CP, JP, KP and VP, which includes 89 crude drugs. Only monographs that provide TLC test information are included in this table (i.e. as part of 106 crude drugs included in Table 4). TLC condition includes developing solvent, detection way, colour tone on TLC and marker compounds.

Table 6 is the Comparative table on assay conditions for crude drugs in CP, JP, KP and VP, which includes 69 crude drugs. Only monographs that provide assay information (e.g. high performance liquid chromatography: HPLC, titration, absorption) are included in this table (i.e. as part of 106 crude drugs included in Table 4). Assay condition includes type of assay, method, developing solvent and detection way.

Table 4

Comparative table on testing methods and specification values for crude drugs in CP, JP, KP and VP

No.	Latin name	Identification Purification (O: Established, X: Not established, $\downarrow:$ Not more than, \uparrow : Not less than)		Loss on drying	Total ash	$\begin{aligned} & \text { Acid insol } \\ & \text { ash } \end{aligned}$	Extract content	Assay (Essential oil content)
Achyranthes bidentata Blume								
	CP RADIX ACHYRANTHIS BIDENTATAE	0 (TLC)	x	O(\downarrow 15.0\%, Water)	O(\downarrow 9.0\%)	O(\downarrow 1.0\%)	\uparrow 6.5\% (1-Butanol-soluble extract)	x
	JP ACHYRANTHIS RADIX	\bigcirc	O (Stem, Foreign matter)	O($\downarrow 17.0 \%$)	O($\downarrow 10.0 \%$)	O($\downarrow 1.5 \%$)	x	x
	KP achyranthis radix	O (TLC)	O (Stem, Foreign matter)	O($\downarrow 17.0 \%$)	O($\downarrow 10.0 \%$)	O($\downarrow 1.5 \%$)	x	x
	vp radix achyranthis bidentatae	O (TLC)	0 (Stem, Foreign matter)	O($\downarrow 15.0 \%$)	O($\downarrow 9.0 \%$)	x	x	x
Alisma orientale Juzepczuk								
	CP RHIZOMA ALISMATIS	\bigcirc	x	x	O(\downarrow 5.0\%)	O(\downarrow 0.5\%)	x	x
	Jp alismatis rhizoma	x	x	x	O(\downarrow 5.0\%)	O(\downarrow 0.5\%)	x	x
	KP alismatis rhizoma	x	x	x	O(\downarrow 5.0\%)	O($\downarrow 0.5 \%$)	x	x
	vp rhizoma alismatis	O (Powder)	x	O($\downarrow 12.0 \%$)	O($\downarrow 5.0 \%$)	x	x	x
Alpinia oxyphylla Miquel								
	CP FRUCTUS ALPINAE OXYPHYLLAE	0 (TLC)	x	${ }^{\mathrm{x}}$	x	x	x	\uparrow 1.0\% (Essential oil content)
	JP ALPINIAE FRUCTUS	${ }^{x}$	x	x	O(\downarrow 10.0\%)	O($\downarrow 2.5 \%$)	x	$\uparrow 0.4 \mathrm{~mL} 50 \mathrm{~g}$ (Essential oil content)
	KP alpiniae fructus	x	x	x	O($\downarrow 10.0 \%$)	O($\downarrow 2.5 \%$)	x	$\uparrow 0.4 \mathrm{~mL} 50 \mathrm{~g}$ (Essential oil content)
	vP fructus alpiniae oxyphyllae	0 (TLC)	O(Foreign matter)	O($\downarrow 11.0 \%$, Water)	x	x	x	$\uparrow 1.0 \%$ (Essential oil content)
Anemarrhena asphodeloides Bunge								
	CP RHIZOMA ANEMARRHENAE	0 (TLC)	x	O(\downarrow 12.0\%, Water)	O(\downarrow 8.5\%)	O(\downarrow 4.0\%)	x	Diosgenin \uparrow 1.0\% (TLC)
	JP anemarrhenae rhizoma	\bigcirc	O (Foreign matter)	x	O(\downarrow 7.0\%)	O($\downarrow 2.5 \%)$	x	x
	KP anemarrhenae rhizoma	O (TLC)	O (Foreign matter)	x	O(\downarrow 7.0\%)	O($\downarrow 2.5 \%$)	x	x
	vP rhizoma anemarrhenae	O (TLC)	0 (Foreign matter)	O($\downarrow 12.0 \%$)	O(\downarrow 8.5\%)	x	x	x
Angelica dahurica Bentham et Hooker fil								
	CP RADIX ANGELICA DAHURICAE	O(TLC)	x	O(\downarrow 14.0\%, Water)	O(\downarrow 6.0\%)	O($\downarrow 1.5 \%$)	\uparrow 15.0\% (Dilute ethanol-soluble extract)	Imperatorin $\uparrow 0.080 \%$ (HPLC)
	Jp angelicae dahuricae radix		O (Leaf sheath, Foreign matter)	x	O(\downarrow 7.0\%)	O(\downarrow 2.0\%)	\uparrow 25.0\% (Dilute ethanol-soluble extract)	x
	kP angelicae dahuricae radix	\bigcirc	O (Leaf sheath, Foreign matter)	x	O(\downarrow 7.0\%)	O(\downarrow 2.0\%)	\uparrow 25.0\% (Dilute ethanol-soluble extract)	x
	vp radix angelica dahuricae	O (TLC)	0 (Foreign matter)	O($\downarrow 13.0 \%$, Water)	O($\downarrow 6.0 \%$)	$\mathrm{O}(\downarrow 2.0 \%)$	x	x
Astragalus membranaceus Bunge								
	CP RADIX AStRAGALI	0 (TLC)	O (Heavy metals, Arsenic, Total BHC, DDT, PCNB)	x	O(\downarrow 5.0\%)	O(\downarrow 1.0\%)	\uparrow 17.0\% (Water-soluble extract)	Astrogaroside \uparrow 0.04\% (TLC)
	Jp astragali radix	x	\bigcirc (Root of Hedysarum species and others)	O(\downarrow 13.0\%)	O(\downarrow 5.0\%)	O(\downarrow 1.0\%)	x	x
	KP ASTRAGALI RADIX		O (Root of Hedysarum species and others)	O($\downarrow 13.0 \%$)	O(\downarrow 5.0\%)	O(\downarrow 1.0\%)	x	x
	vP radix astragali membranaci	O (TLC)	x	O($\downarrow 12.0 \%$)	O(\downarrow 5.0\%)	x	x	x
Atractylodes lancea De Candolle, A. chinensis Koidzumi								
	CP RHIZOMA ATRACTLIODIS	0 (TLC)	x	${ }_{x}$	O($\downarrow 7.0 \%$)	x	x	x
	JP atractylodis lanceae rhizoma	x	O (Atractylodis rizome)	x	O(\downarrow 7.0\%)	O(\downarrow 1.5\%)	x	$\uparrow 0.7 \mathrm{~mL} 50 \mathrm{~g}$ (Essential oil content)
	KP atractylodis rhizoma		O (Atractylodis rizome)	x	O(\downarrow 7.0\%)	O(\downarrow 1.5\%)	x	$\dagger 0.7 \mathrm{~mL} 50 \mathrm{~g}$ (Essential oil content)
	vP rhizoma atractilodis	O (TLC)	x	x	O($\downarrow 7.0 \%$)	x	x	x
Atractlodes ovata De Candolle								
	CP RHIZOMA ATRACTYLODIS MACROCEPHALAE	O(TLC)	O (Degree of colouration)	x	O(\downarrow 5.0\%)	O(\downarrow 1.0\%)	x	x
	JP atractylodis rhizoma	-	O (Atractylodis lancea rhizome)	x	O(\downarrow 7.0\%)	O(\downarrow 1.0\%)	x	$\uparrow 0.5 \mathrm{~mL} 50 \mathrm{~g}$ (Essential oil content)
	KP ATRACTYLODIS RHIZOMA ALBA	\bigcirc	O (Atractylodis lancea rizome)	x	O(\downarrow 7.0\%)	O($\downarrow 1.0 \%$)	x	$\uparrow 0.7 \mathrm{~mL} 50 \mathrm{~g}$ (Essential oil content)
	vP RHIZOMA ATRACTYLODIS MACROCEPHALAE	O (TLC)	O (Foreign matter)	O($\downarrow 14.0 \%$)	O(\downarrow 5.0\%)	x	x	x
Bupleurum falcatum Line								
	CP RADIX BUPLEURI	0 (TLC)	x	x	O(\downarrow 8.0\%)	x	\uparrow 11.0\% (Dilute ethanol-soluble extract)	x
	JP bupleuri radix	O (TLC)	O (Stem and leat, Foreign matter)	x	O($\downarrow 6.5 \%$)	O(\downarrow 2.0\%)	\uparrow 11.0\% (Dilute ethanol-soluble extract)	x
	KP bupleuriradix	O (TLC)	O (Stem and leat, Foreign matter)	x	O($\downarrow 6.5 \%$)	O($\downarrow 2.0 \%$)	x	Saikosaponin a $\uparrow 0.3 \%$ (HPLC)
	vp radix bupleuri	0 (TLC)	O(Stem and leat, Foreign matter)	O(1 12.0\%)	O(\downarrow 8.0\%)	x	\dagger 11.0\% (Dilute ethanol-soluble extract)	x
10 Carthamus tinctorius Linne								
	CP FLOS CARTHAMI	0 (TLC)	0 (Foreign matter)	O($\downarrow 13.0 \%$, Water)	O($\downarrow 15.0 \%$)	O(\downarrow 5.0\%)	\uparrow 30.0\% (Water-soluble extract)	Hydroxysafilor A \uparrow 1.0\% (HPLC), Kaempferide $\uparrow 0.05 \%$ (HPLC)
	JP CARthami flos	\bigcirc	O (Foreign matter)	${ }^{x}$	O($\downarrow 18.0 \%$)	${ }^{\text {x }}$	x	x
	KP carthamiflos	-	O (Foreign matter)	x	O($\downarrow 18.0 \%$)	x	x	x
	vp flos carthami tinctoril	O (TLC)	O (Change of colouration, Foreign matter)	O($\downarrow 13.0 \%$, Water)	O($\downarrow 15.0 \%$)	x	x	x
11 Cimicifuga heracleifiolia Komarov								
	CP RHIZOMA CIIICIIFUGAE	${ }^{0}$ (TLC)	\bigcirc (Foreign matter)	${ }_{x}^{\text {O (} \downarrow 13.0 \% \text {, Water) }}$	O($\downarrow 8.0 \%$)	O(\downarrow 4.0\%)	\uparrow 17.0\% (Dilute ethanol-soluble extract)	Ferulic acid \uparrow 0.1\% (HPLC)
	JP CIIMCIFUGAE RHIZOMA	${ }^{x}$	O (Rhizome of Astilbe thunbergii Miquel)	${ }^{\mathrm{x}}$	O(\downarrow 9.0\%)	O($\downarrow 1.5 \%$)	\uparrow 18.0\% (Dilute ethanol-soluble extract)	x
	KP CImicifugae rhizoma	x	O (Rhizome of Astilbe thunbergii Miquel)	x	O(\downarrow 9.0\%)	O($\downarrow 1.5 \%$)	\uparrow 18.0\% (Dilute ethano-soluble extract)	x
	vP rhizoma CIIICIIFUGAE	x	x	O(1 12.0\%)	O(\downarrow 8.0\%)	x	x	x
12 Cinnamomum cassia Blume								
	CP CORTEX CINNAMOMI	0 (TLC)	x	O(\downarrow 15.0\%, Water)	O(\downarrow 6.0\%)	x	x	\uparrow 1.2\% (Essential oil content), Cinnamic acid \uparrow 1.5\% (HPLC)
	JP CINNAMOMI CORTEX	$\bigcirc \mathrm{O}$ (TLC)	x	\bigcirc O (\downarrow 15.5\%)	\bigcirc O($5.0 \%)$	x	x	$\uparrow 0.5 \mathrm{~mL} 50 \mathrm{~g}$ (Essential oil content)
	KP CIINNAMOMI CORTEX	$\bigcirc{ }^{0}$ (TLC)	x	O($\downarrow 15.5 \%$)	O($\downarrow 5.0 \%$)	${ }^{\mathrm{x}}$	x	Cinnamic acid $\uparrow 0.03 \%$ (HPLC)
	vP CORTEX CINNAMOMI	0 (TLC)	O (Foreign matter)	O($\downarrow 14.0 \%$, Water)	O(\downarrow 5.0\%)	x	x	$\uparrow 1.0 \%$ (Essential oil content)
13 Cornus officicinalis Siebold et Zuccarini								
	CP FRUCTUS CORNI	\bigcirc O(TLC)	O (Foreign matter)	O(\downarrow 16.0\%, Water)	O($\downarrow 6.0 \%$)	O(\downarrow 0.5\%)	\uparrow 50.0\% (Water-soluble extract)	Loganin \uparrow 0.60\% (HPLC)
	JP CORNI fructus	\bigcirc O(TLC)	O (Foreign matter)	${ }^{\text {x }}$	O(\downarrow 5.0\%)	${ }^{x}$	$\uparrow 35.0 \%$ (Dilute ethanol-soluble extract)	x
	KP CORN FRUCTUS	\bigcirc	\bigcirc O(Foreign matter)	x	$\mathrm{O}(\downarrow 5.0 \%)$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	x	Loganin $\uparrow 0.5 \%$ (HPLC)
	vP FRUCTUS CORNI OFFICIINALIS	0 (TLC)	O(Seed and stem, Foreign matter)	O($\downarrow 12.0 \%$, Water)	x	x	x	x

No.	Latin name	Identification Purification (O: Established, X: Not established, $\downarrow:$ Not more than, $\uparrow:$ Not less than)		Loss on drying	Total ash	Acid insol ash	Extract content	Assay (Essential oil content)
28 Myristica fragrans Houttuyn								
*	CP SEmEN MYRISTICAE	0 (TLC)	x	O(\downarrow 10.0\%, Water)	x	x	x	\uparrow 6.0\% (Essential oil content)
	Jp myristicae semen	\bigcirc	x	${ }^{\mathrm{x}}$	O(\downarrow 3.0\%)	x	x	$\uparrow 0.5 \mathrm{~mL} 50 \mathrm{~g}$ (Essential oil content)
	KP myristicae semen	O(TLC)	x	x	O(\downarrow 3.0\%)	O(${ }^{\text {0 0.5\% }}$)	x	$\uparrow 0.5 \mathrm{~mL} 50 \mathrm{~g}$ (Essential oil content)
	vP SEmen myristicae	O (TLC)	x	O(ل 12.0\%, Water)	x	x	x	\uparrow 6.0\% (Essential oil content)
29 Nelumbo nucifera Gaertner								
	CP SEmEN NELUMBINIS	O(TLC)	x	O(\downarrow 14.0\%, Water)	x	X	x	x
	Jp nelumbis semen	-	x	x	O(\downarrow 5.5\%)	x	$\uparrow 12.0 \%$ (Dilute ethanol-soluble extract)	x
	KP nelumbinis semen	-	x	x	O(ل 5.5\%)	x	\uparrow 12.0\% (Dilute ethanol-soluble extract)	x
	vP Semen nelumbinis	\bigcirc	O (Foreign matter)	O($\downarrow 11.0 \%$)	O($\downarrow 5.0 \%$)	x	x	x
30 Paeonia lactiflora Pallas								
	CP RAdIX PaEONIAE ALBA	0 (TLC)	O(Heavy metals, Arsenic)	x	x	x	x	Paeonifilorin \uparrow 1.6\% (HPLC)
	JP paeoniae radix	O(TLC)	x	O(\downarrow 14.0\%)	O(ป 6.5\%)	O(${ }^{\text {0.5\%) }}$	x	Paeoniflorin \uparrow 2.0\% (HPLC)
	kP paeoniae radix	O(TLC)	x	x	O(ป 6.5\%)	O(\downarrow 0.5\%)	x	Paeoniflorin \uparrow 2.0\% (HPLC)
	vp radix paeoniae	0 (TLC)	x	x	x	x	x	x
31 Paeonia suffruticosa Andrews								
	CP CORTEX MOUTAN	O(TLC)	x	O(\downarrow 13.0\%, Water)	O(\ 5.0\%)	O(\downarrow 1.0\%)	\uparrow 15.0\% (Ethanol-soluble extract)	Paeonol \uparrow 1.2\% (HPLC)
	Jp moutan cortex	\bigcirc O(TLC)	O (Xylem, Foreign matter)	x	O($\downarrow 6.0 \%$)	O(\downarrow 1.0\%)	x	Paeonol $\uparrow 1.0 \%$ (HPLC)
	KP moutan cortex radicis	O(TLC)	O (Xylem, Foreign matter)	x	O(ป 6.0\%)	O(\downarrow 1.0\%)	x	Paeonol $\uparrow 1.0 \%$ (HPLC)
	VP Cortex paeonia suffuruticosae	0 (TLC)	O (Wood, Foreign matter)	O($\downarrow 13.0 \%$)	O(\downarrow 5.0\%)	x	x	Paeonol $\uparrow 1.2 \%$ (Absorption)
32 Panax ginseng C. A. Meyer								
	CP RADIX ET RHIZOMA GINSENG	O(TLC)	x	O(\downarrow 12.0\%, Water)	O(\downarrow 5.0\%)	O(\downarrow 1.0\%)	x	Ginsenoside Rg, + Re $\uparrow 0.30 \%$, Ginsenoside Rb, $\uparrow 0.20 \%$ (HPLC)
	Jp ginseng radix	O(TLC)	O (Foreign matter, Heavy metals, Arsenic, Total BHC, Total DDT)	x	O($\downarrow 4.2 \%$)	x	\uparrow 14.0\% (Dilute ethanol-soluble extract)	x
	KP Ginseng radix alba	O(TLC)	\bigcirc O (Foreign matter)	x	O(\downarrow 4.2\%)	x	$\uparrow 14.0 \%$ (Dilute ethanol-soluble extract)	x
	vp radix Ginseng	O (TLC)	x	x	x	x	x	x
33 Platycodon grandiflorum A. De Candolle								
	CP RADIX PLATYCODONIS	O(TLC)	x	x	x	x	x	Total saponin \uparrow 6.0\% (Dry weight)
	Jp platycodiradix	-	x	x	O(\downarrow 4.0\%)	x	\uparrow 25.0\% (Dilute ethanol-soluble extract)	x
	KP platycodiradix	-	x	x	O($\downarrow 4.0 \%$)	x	\uparrow 25.0\% (Dilute ethano-soluble extract)	x
34 Pogostemon cablin Bentham								
	CP HERBA POGOSTEMONIS	0 (TLC)	0 (Foreign matter, Leaves)	O(\downarrow 14.0\%, Water)	O($\downarrow 11.0 \%$)	O(\downarrow 4.0\%)	\uparrow 2.5\% (Ethanol-soluble extract)	Patchouli alcohol $\uparrow 0.10 \%$ (GC)
* Jp	JP Pogostemoni herba	-	x	O($\downarrow 13.0 \%$)	O($\downarrow 13.0 \%$)	O(${ }^{\text {3 3 \% \% }}$)	x	$\uparrow 0.3 \mathrm{~mL} 50 \mathrm{~g}$ (Essential oil content)
	KP pogostemonis herba	-	x	O($\downarrow 13.0 \%$)	O(\downarrow 3.0\%)	x	x	$\uparrow 0.3 \mathrm{~mL} 50 \mathrm{~g}$ (Essential oil content)
	vP herba pogostemonis	O (TLC)	0 (Foreign matter)	O($\downarrow 12.0 \%$, Water)	x	x	x	\uparrow \%\% (Essential oil content)
35 Polygonatum sibiricum Redoute								
	CP RHIZOMA POLYGONATI	\bigcirc	x	O(\downarrow 18.0\%, Water)	O(\downarrow 4.0\%)	O(${ }^{\text {1.0\%) }}$	\uparrow 45.0\% (Dilute ethanol-soluble extract)	Glucose \uparrow 7.0\% (Absorption)
	JP polygonatirhizoma	x	x	x	O(\downarrow 5.0\%)		x	x
	KP polvgonati Rhizoma	x	x	O (\downarrow 15.0\%)	O(\downarrow 3.0\%)	x	\uparrow 14.0\% (Dilute ethanol-soluble extract)	x
	vp rhizoma polygonati	x	O(Stems and rhizomes, other foreign matter)	O($\downarrow 14.0 \%$, Water)	x	x	x	x
36 Polyporus umbellatus Fries								
	CP POLYPORUS	\bigcirc	${ }^{\mathrm{x}}$	${ }_{x}$	O($\downarrow 12.0 \%$)	x	${ }_{x}$	x
	JP polyporus	\bigcirc	x	x	O($\downarrow 16.0 \%$)	O(\downarrow 4.0\%)	x	x
	KP polyporus	-	x	x	O($\downarrow 16.0 \%$)	O(\downarrow 4.0\%)	x	x
	vp polyporus	-	x	O($\downarrow 13.0 \%$)	O($\downarrow 12.0 \%$)	x	x	x
37 Poria cocos Wolf								
	CP PORIA	\bigcirc	${ }^{\mathrm{x}}$	$\mathrm{o}^{\text {(} ~} \downarrow$ 15.0\%, Water)	O($\downarrow 4.0 \%$)	${ }^{0}$ (\downarrow 2.0\%)	${ }^{\mathrm{x}}$	x
	JP Poria	-	x	x	O($\downarrow 1.0 \%$)	${ }^{\text {x }}$	x	x
	KP hoelen	\bigcirc	x	x	\bigcirc O(\downarrow 1.0\%)	x	x	x
	VP PORIA	\bigcirc	O (Foreign matter)	O($\downarrow 12.0 \%$)	x	x	x	x
38 Prunus armeniaca Linne, P. armeniaca Linne var. ansu Maximowicz								
	CP SEMEN ARMENIACAE AMARUM	0 O(TLC)	O (Rancidity)	${ }^{\mathrm{x}}$	${ }^{\mathrm{x}}$	${ }^{\mathrm{x}}$	x	Amygdalin \uparrow 3.0\% (Titration)
	jp armeniacae semen	\bigcirc O(TLC)	O (Rancidity, Foreign matter)	${ }^{x}$	x	${ }^{x}$	x	x
	kP armeniacae semen	O(TLC)	O (Rancidity, Foreign matter)	x	x	x	x	Amygdalin \uparrow 3.0\% (HPLC)
	vp semen armeniacae amarum	0 (TLC)	0 (Foreign matter, Inner pericarp)	O(\downarrow 7.0\%, Water)	x	x	x	Amygdalin \uparrow 3.0\% (Titration)
39 Prunus persica Batsch, P. persica Batsch var davidiana Maximowicz								
	CP SEmen Persicae	\bigcirc	O (Rancidity)	x	x	X	x	x
	Jp persicae semen	O (TLC)	0 (Rancidity, Foreign matter)	x	x	x	x	x
	KP persicae semen	O (TLC)	O (Rancidity, Foreign matter)	x	${ }^{\mathrm{x}}$	${ }^{\mathrm{x}}$	x	Amygdalin $\uparrow 0.5 \%$ (HPLC)
	vp semen pruni	x	0 (Foreign matter)	O($\downarrow 7.0 \%$, Water)	x	x	x	x
40 Rheum palmatum Linne								
	CP RADIX Et RHIZOMA RHEI	0 (TLC)	0 (Raponticin)	O($\downarrow 15.0 \%$)	O($\downarrow 10.0 \%$)	O(\downarrow 0.8\%)	${ }^{\uparrow}$ 25.0\% (Water-soluble extract)	Aloeemodin+Rhein+Emodin+Chrysophanol+Physcion \uparrow 1.5\% (HPLC)
	JP rheirhizoma	O (TLC)	O (Raponticin)	O($\downarrow 13.0 \%$)	O($\downarrow 13.0 \%$)	x	$\uparrow 30.0 \%$ (Dilute ethanol-soluble extract)	Sennoside A $\uparrow 0.25 \%$ (HPLC)
	KP rheirhizoma	0 (TLC)	0 (Raponticin)	O($\downarrow 13.0 \%$)	O($\downarrow 13.0 \%$)	O(\downarrow 2.0\%)	x	Sennoside A $\uparrow 0.25 \%$ (HPLC)
41 Schisandra chinensis Baillon								
	CP FRUCTUS SCHISANDRAE CHINENSIS JP Schisandrae fructus	O (TLC) O (TLC)	O (Foreign matter) O (Foreign matter)	x	X $\mathrm{O}(\downarrow 5.0 \%)$	x	x	Schizandrin $\uparrow 0.40 \%$ (HPLC) x
	KP SCHIZANDRAE FRUCTUS	0 (TLC)	O (Foreign matter)	x	O(\downarrow 5.0\%)	x	x	x
	vP fructus schisandrae	O(TLC)	O (Foreign matter)	O(ل 13.0\%, Water)	x	x	x	x

No.	Latin name	Identification Purification (O: Established, X: Not established, $\downarrow:$ Not more than, \uparrow : Not less than)		Loss on drying	Total ash	Acid insol ash	Extract content	Assay (Essential oil content)									
55 Curcuma longa Linne																	
	CP RHIZOMA CURUCUMAE LONGAE	0 (TLC)	x	O($\downarrow 16.0 \%$, Water)	O(\downarrow 7.0\%)	O(\downarrow 1.0\%)	\uparrow 12.0\% (Dilute ethanol-soluble extract)	\uparrow 7.0\% (Essential oil content), Curcumin \uparrow 1.0\% (HPLC)									
	JP CURCUMAE RHIZOMA	O(TLC)	x	O(\downarrow 17.0\%)	O(\downarrow 7.5\%)	O($\downarrow 1.0 \%$)	$\dagger 9.0 \%$ (Dilute ethanol-soluble extract)	x									
	kP curcumae longae rhizoma	O(TLC)	O (Artiticial coloring)	O($\downarrow 16.0 \%$)	$\mathrm{O}(\downarrow 9.0 \%)$	x	x	x									
	vP rhizoma curucumae longae	0 (TLC)	O(Foreign matter)	O($\downarrow 12.0 \%$, Water)	O(\downarrow 8.0\%)	x	\uparrow ¢ 8.0\% (Ethanol-soluble extract)	x									
56 Notopterygium incisum Ting ex H. T. Chang, N. forbesii Boissieu																	
	CP RHIzOMA ET RADIX NOTOPTERYGII	x	x	x	x	x	\uparrow 15.0\% (Ethanol-soluble extract)	\uparrow 2.8\% (Essential oil content)									
	JP Notopteryall rilzoma	O(TLC)	x	O($\downarrow 13.0 \%$)	O(ป 6.5\%)	O(\downarrow 1.5\%)	\dagger 20.0\% (Dilute ethanol-soluble extract)	x									
	KP ostericiradix	-	O (Foreign matter)	O($\downarrow 12.0 \%$)	O(\downarrow 10.0\%)	O(\downarrow 2.0\%)	\dagger 20.0\% (Dilute ethanol-soluble extract)	$\uparrow 0.2 \mathrm{~mL} 50 \mathrm{~g}$ (Essential oil content)									
	vP rhizoma seu radix notopteryail	O (Powder)	O(Foreign matter)	O(\downarrow 15.0\%, Water)	x	x	\times	x									
57 Syzygium aromaticum Merrill et Perry																	
	CP FLOS CARYOPHYLLI	O(TLC)	0 (Foreign matter)	O(${ }^{\text {d } 12.0 \% \text {, Water })}$	x	x	x	Eugenol \uparrow 11.0\% (GC)									
	JP CARYOPhYLLIflos	-	O (Stem, Foreign matter)	x	O(\downarrow 7.0\%)	O(${ }^{\text {0.5\%) }}$	x	$\uparrow 1.6 \mathrm{~mL} 10 \mathrm{~g}$ (Essential oil content)									
	kP syzyGilflos	-	O (Stem, Foreign matter)	x	O(\downarrow 7.0\%)	O(\downarrow 0.5\%)	x	$\uparrow 1.6 \mathrm{~mL} / 10 \mathrm{~g}$ (Essential oil content)									
	vP flos syzygil aromatici	O (Powder)	O(Foreign matter)	O(ل 13.0%, Water)	O(\downarrow 7.0\%)	x	x	$\uparrow 15.0 \%$ (Essential oil content)									
58 Arisaema erubescens Schott, A. heterophylum Blume																	
*	CP RHIZOMA ARISAEMATIS	o	x	x	x	x	x	x									
	Jp arisamatis tuber	-	x	O(\downarrow 13.0\%)	O(ป 5.0\%)	x	x	x									
	KP arisaematis rhizoma	-	x	O(\downarrow 15.0\%)	O(\downarrow 5.0\%)	O(\downarrow 1.0\%)	x	-									
	59 Cassia obtusifolia Linne, c. tora Linne																
	CP SEMEN CASSIAE	O(TLC)	x	x	O(\downarrow 5.0\%)	x	x	Crysophanol $\uparrow 0.080 \%$ (HPLC)									
	JP cassiae semen	-	0 (Foreign matter)	x	O(\downarrow 5.0\%)	x	x	x									
	KP cassiae semen	o	O (Foreign matter)	x	O(\downarrow 5.0\%)	x	x	x									
	vp semen cassiae torae	\bigcirc	O (Thin seeds, Foreign matter)	O(ل 12.0\%, Water)	O(\downarrow 7.0\%)	x	x	-									
60 Gentiana scabra Bunge																	
	CP RADIX Et RHIZOMA Gentianae	O(TLC)	x	x	O(\downarrow 7.0\%)	x	x	Gentiopicrin \uparrow 1.0\% (HPLC)									
	Jp gentianae scabrae radix	O (TLC)	x	x	O($\downarrow 6.0 \%$)	O(\downarrow 3.0\%)	x	x									
	kP gentianae scabrae radix	O (TLC)	x	x	O(\downarrow 7.0\%)	O(\downarrow 3.0\%)	x	x									
	vp radix gentianae	\bigcirc	O (Seeds, Foreign matter)	O($\downarrow 12.0 \%$, Water)	x	x	x	x									
61 Lycium barbarum Linne, L. chinense Miller																	
	CP FRUCTUS LYCII	0 (TLC)	x	O(\downarrow 13.0\%, Water)	O(\downarrow 5.0\%)	x	\uparrow 55.0\% (Water-soluble extract)	Glucose $\uparrow 1.8 \%$ (Absorption), Betaine $\uparrow 0.30 \%$ (HPLC)									
	JP LYCIIFRuctus	O (TLC)	O (Foreign matter)	x	O(\downarrow 8.0\%)	O(\downarrow 1.0\%)	\uparrow 35.0\% (Dilute ethanol-soluble extract)	x									
	KP LYClifructus	-	O (Foreign matter)	x	O(\downarrow 6.0\%)	x	x	Betaine $\uparrow 0.5 \%$ (HPLC)									
	vp fructus lycil	O (Powder)	O (Foreign matter)	O($\downarrow 15.0 \%$, Water)	x	x	x	x									
	Cortex phellodendri chinensis	0 (TLC)	x	O($\downarrow 12.0 \%$, Water)	O(\downarrow 8.0\%)	x	\uparrow 14.0\% (Dilute ethanol-soluble extract)	Berberine \uparrow. ${ }^{\text {a }}$ ((HPLC)									
	JP phellodendri cortex	0 (TLC)	x	O(\downarrow 9.0\%)	O($\downarrow 7.5 \%$)	O(${ }^{\text {a }}$. 5%)	x	Berberine $\uparrow 1.2 \%$ (HPLC)									
	KP phellodendricortex	O(TLC)	x	O(\downarrow 9.0\%)	O(\downarrow 7.5\%)	x	x	Berberine $\uparrow 0.6 \%$ (HPLC)									
	vp Cortex phellodendri	\bigcirc	O(Foreign matter)	O($\downarrow 13.0 \%$)	x	x	x	Berberine \uparrow 2.5\% (Absorption)									
63 Plantago asiatica Linne																	
	CP Semen plantaginis	-	O (Swelling capacity)	O($\downarrow 12.0 \%$, Water)	O(ป 6.0\%)	O(\downarrow 2.0\%)	x	x									
	JP PLANTAGINIS SEmen	-	0 (Foreign matter)	x	O(\downarrow 5.5\%)	O(\downarrow 2.0\%)	x	x									
	KP PLANTAGINIS SEmen	-	O (Foreign matter)	x	O(\downarrow 5.5\%)	O(\downarrow 2.0\%)	x	x									
	vp semen plantaginis	O (Powder)	O (Flat seeds, Swelling capacity)	O(ل 10.0\%, Water)	x	\times	x	x									
64 Polygala tenuifolia Willdenow																	
	CP RADIX POLYGALAE	0 (TLC)	x	O(\downarrow 12.0\%, Water)	O($\downarrow 6.0 \%$)	O(${ }^{\text {1.5\%) }}$	\uparrow 20.0\% (70\% ethanol-soluble extract)	Polygalic acid $\uparrow 0.70 \%$ (HPLC)									
	Jp polygalae radix	-	O (Stem, Foreign matter)	x	O($\downarrow 6.0 \%$)	x	x	x									
	kp polygalae radix	-	O (Stem, Foreign matter)	x	O(ป 6.0\%)	x	x	x									
	vp radix polygalae	\bigcirc	O (Core-wood, Stem, Foreign matter)	O(ل 14.0\%, Water)	O($\downarrow 6.0 \%$)	x	x	x									
65 Pueraria lobata Ohwi																	
	CP radix puerariae lobatae	O(TLC)	x	O($\downarrow 14.0 \%$, Water)	O(\downarrow 7.0\%)	x	x	Puerarin \uparrow 2.4\% (HPLC)									
	Jp puerariae radix	O (TLC)	x	O(\downarrow 13.0\%)	O($\downarrow 6.0 \%$)	x	x	Puerarin \uparrow 2.0\% (HPLC)									
	kP puerariae radix	0 (TLC)	x	O($\downarrow 13.0 \%$)	O(\downarrow 6.0\%)	x	x	Puerarin \uparrow 2.0\% (HPLC)									
	vp radix puerariae	O (Powder)	O(Foreign matter)	O($\downarrow 12.0 \%$)	O($\downarrow 5.0 \%$)	x	-	x									
66 Rehmannia glutinosa Liboschitz																	
	CP RADIX REHMANNIAE	0 (TLC)	x	O(\downarrow 15.0\%, Water)	O($\downarrow 6.0 \%$)	O(\downarrow 2.0\%)	\uparrow 65.0\% (Water-soluble extract)	Catalnol \uparrow 0.20\%									
	Jp rehmanniae radix	x	x	x	O($\downarrow 6.0 \%$)	O(\downarrow 2.5\%)	x	x									
	KP rehmanniae radix	x	O (Foreign matter)	x	O(\downarrow 6.0\%)	O(\downarrow 2.0\%)	x	x									
67 Scrophularia ningpoensis Hemsley, S. buergeriana Miquel																	
*	CP RADIX SCROPHULARIAE	${ }^{\circ}$ (TLC)	x	O(\downarrow 12.0\%, Water)	O(\downarrow 5.0\%)	O(\downarrow 1.8\%)	\uparrow 60.0\% (Water-soluble extract)	Harpagoside $\uparrow 0.050 \%$ (HPLC)									
	JP scrophulariae radix	\bigcirc	x	O(\downarrow 17.0\%)	O($\downarrow 6.0 \%$)	O(\downarrow 2.0\%)	x	x									
	KP Scrophulariae radix	\bigcirc	x	O(17.0\%)	\bigcirc O($6.0 \%)$	$\mathrm{O}_{\mathrm{x}}(\downarrow 2.0 \%)$	${ }_{\chi}{ }^{24.0 \%}$ (Dilute ethanol-soluble extract)	x									
	68 Geranium thunbergii Siboid et Zuccarini																
JP ${ }_{\text {JP }}$ geranil herba		-	O (Foreign matter)	x	O(\downarrow 10.0\%)	O(\downarrow 1.5\%)	\uparrow 15.0\% (Dilute ethanol-soluble extract)	x									
		-	O (Foreign matter)	x	O($\downarrow 10.0 \%$)	O(\downarrow 1.5\%)	\uparrow 15.0\% (Dilute ethano-soluble extract)	x									
		-	0 (Root, Foreign matter)	O($\downarrow 12.0 \%$)	O($\downarrow 10.0 \%$)	O($\downarrow 6.0 \%$)	\times	\uparrow 13.0\% (tannin)									

No. Latin name	(O: Established, X: Not established, $\downarrow:$ Not more than, $\uparrow:$ Not less than)		Loss on drying	Total ash	Acid insol ash	Extract content	Assay (Essential oil content)
69 Curcuma zedoaria Roscoe							
Jp zedoariae rhizoma	x	x	x	O(\downarrow 7.0\%)	x	x	$\uparrow 0.5 \mathrm{~mL} 50 \mathrm{~g}$ (Essential oil content)
kP zedoariae rhizoma	x	x	x	O(\downarrow 7.0\%)	x	x	$\uparrow 0.5 \mathrm{~mL} 50 \mathrm{~g}$ (Essential oil content)
vp rhizoma Curucumae zedoariae	x	O(Stem and pericladia, Foreign matter)	O(\downarrow 13.0\%, Water)	O($\downarrow 7.0 \%$)	x	x	\uparrow 1.0\% (Essential oil content)
70 Piper nigrum Linne							
CP FRUCTUS PIPERIS	0 (TLC)	x	x	x	x	x	Piperine $\uparrow 3.0 \%$ (HPLC)
JP KP PIPERIS NIGRI FRUCTUS	x	O (Foreign matter)	x	O($\downarrow 7.0 \%$)	x	x	x
vP FRUCTUS PIPERIS NIGRI	0 (TLC)	$\mathrm{x}^{\text {(Foreign mater) }}$	O($\downarrow 11.0 \%$, Water)	$\mathrm{x}^{(\downarrow .0 \%)}$	x	x	${ }_{\text {¢ }} 1.0 \%$ (Essential oil content)
71 Salvia miltiorrhiza Bunge							
CP radix et rhizoma salviae miltiorrhizae	O (TLC)	x	O($\downarrow 13.0 \%$, Water)	O(\downarrow 10.0\%)	O(\downarrow 3.0\%)	$\uparrow 35.0 \%$ (Water-soluble extract), 15.0\% (Ethanol-soluble extract)	Tanshinone II $\uparrow 0.20 \%$, Salvinolic acid B $\uparrow 3.0 \%$ (HPLC)
JP							
vp radiae militiorrilzae radix	O (TLC)	x	O($\downarrow 12.0 \%$)	O(${ }^{\text {7.0\% }}$)	x	\uparrow ¢ 5.0% (Dilute ethanol-soluble extract)	x
	\bigcirc	0 (Foreign matter)	O($\downarrow 12.0 \%$)	x	x	x	x
72 Akebia quinata Decaisne, Akebia trifoliata Koidzumi							
CP CAuLIS AKEbiaE	O(TLC)	x	O(\downarrow 10.0\%, Water)	O($\downarrow 6.5 \%$)	x	x	Oleanoic acid + Hederagenin $\uparrow 0.15 \%$ (HPLC)
Jp akebiae caulis	\bigcirc	x	x	O(${ }^{\text {(10.0\%) }}$	${ }^{\text {x }}$	x	x
KP akebiae caulis vp	-	x	x	O(\downarrow 7.0\%)	x	x	x
73 Crataegus pinnatifida Bunge var. major N.E. Brown							
CP FRUCTUS CRATAEGI	O(TLC)	x	O(\downarrow 12.0\%, Water)	O(\downarrow 3.0\%)	x	\uparrow 21.0\% (Ethanol-soluble extract)	Citric acid \uparrow 5.0\% (Titration)
* Jp crataegi fructus	-	x	x	O($\downarrow 6.0 \%$)	x	x	x
KP CRATAEGI fructus vp	-	x	x	O($\downarrow 6.0 \%$)	x	x	x
74 Areca catechu Linne							
CP SEmen arecae	O(TLC)	x	O(\downarrow 10.0\%, Water)	x	x	x	Arecoline $\uparrow 0.30 \%$ (Titration)
Jp arecae semen	O (TLC)	O (Pericarp, Foreign matter)	x	O(\downarrow 2.5\%)	${ }_{\text {x }}$	x	x
kP arecae semen vp	O (TLC)	0 (Pericarp, Foreign matter)	x	O(\downarrow 2.5\%)	x	x	x
75 Cassia angustifolia Vah, C. acutifolia Delile							
CP FOLIUM SENNAE	0 (TLC)	O (Foreign matter)	O(\downarrow 10.0\%, Water)	x	x	x	Sennoside B \uparrow 2.5\% (Absorption)
Jp sennae follum	\bigcirc O(TLC)	O (Rachis and fruit, Foreign matter, Total BHC and DDT)	O(\downarrow 12.0\%)	O($\downarrow 12.0 \%$)	$\text { O (} \downarrow \text { 2.0\%) }$	x	Total Sennoside \uparrow 1.0\% (HPLC)
KP SENNAE FOLIUM vp	O (TLC)	O (Rachis and fruit, Foreign matter)	O(\downarrow 12.0\%)	O($\downarrow 12.0 \%$)	O(\downarrow 2.0\%)	x	Total Sennoside $\uparrow 1.0 \%$ (HPLC)
76 Crocus sativus Linne							
CP stigma croci	0 (TLC)	O (Absorbance)	O($\downarrow 12.0 \%$)	O(${ }^{\text {7.5\%) }}$	O(\downarrow 1.5\%)	\uparrow ¢5.0\% (30\%Ethanol-soluble extract)	Crocin l+ll \uparrow 10.0\%, (HPLC)
JP crocus	\bigcirc	O (Aniline dyes, Glycerol, Sugar or honey, Yellow style)	O($\downarrow 12.0 \%$)	O(\downarrow 7.5\%)	$\mathrm{x}^{\text {x }}$	$\mathrm{x}^{\text {x }}$	Crocin (Content)
Kp crocus	O (Crocin)	O (Aniline dyes, Glycerol, Sugar or honey, Yellow style)	O($\downarrow 12.0 \%$)	O($\downarrow 7.5 \%$)	x	x	x
77 Dioscorea batatas DecaiseCP RHIzOMA DIOSCOREAE							
			x	x	x	x	x
JP dioscoreae rhizoma	-	x	O($\downarrow 14.0 \%$)	O(${ }^{\text {6.0\%) }}$	O(\downarrow 0.5\%)	x	x
$\begin{aligned} & \text { Kp } \\ & \text { vp } \\ & \hline \end{aligned}$	-	x	O($\downarrow 14.0 \%$)	O(${ }^{\text {6.0\%) }}$	O(\downarrow 0.5\%)	x	x
78 Pharbitis nil Choisy							
CP SEMEN PHARBITIDIS	${ }^{0}$ (TLC)	x	O(\downarrow 10.0\%, Water)	O(\downarrow 5.0\%)	O(${ }^{\text {(1.0\%) }}$	\uparrow 15.0\% (Ethanol-soluble extract)	Caffeic acid+Caffeic acid ethyl ester $\uparrow 0.20 \%$ (HPLC)
JP pharbitidis semen	x	x	x	O(${ }^{\text {6.0\%) }}$	x	x	x
vp	x	x	x	O(${ }^{\text {6.0\%) }}$	x	x	x
79 Saposhnikovia divaricata Schiskin							
CP RADIX SAPOSHNIKOVIAE	0 (TLC)	x	O(\downarrow 10.0\%, Water)	O(\downarrow 6.5\%)	O(\downarrow 1.5\%)	\uparrow 13.0\% (Ethanol-soluble extract)	Cimicifugoside 5 -Methoxyvisaminol $\uparrow 0.24 \%$ (HPLC)
JP SAPOSHNIKOVIAE RADIX	${ }^{\mathrm{x}}$	O (Foreign matter)	${ }^{\text {x }}$	$0(\downarrow 7.0 \%)$	O(${ }^{\text {1.5\%) }}$	\uparrow ¢ 20.0% (Dilute ethano-soluble extract)	x
KP SAPOSHNIKOVIAE RADIX VP	x	O (Foreign matter)	x	O(\downarrow 7.0\%)	O($\downarrow 1.5 \%$)	\uparrow ¢ 0.0% (Dilute ethanol-soluble extract)	x
80 Schizonepeta tenuifolia Briquet							
CP SPICA SCHZONEPETAE	O(TLC)	x	O(\downarrow 12.0\%, Water)	x	x	\uparrow ¢ 8.0\% (Ethanol-soluble extract)	$\uparrow 0.40 \%$ (Essential oil content), Pulegone $\uparrow 0.08 \%$ (HPLC)
JP SCHIZONEPETAE SPICA	\bigcirc	x	${ }^{\text {x }}$	O(${ }^{\text {11.0\% }}$)	O(${ }^{\text {3.0\% }}$)	$\uparrow 8.0 \%$ (Dilute ethanol-soluble extract)	x
KP SCHIZONEPETAE SPICA vP	-	x	x	O(${ }^{\text {(11.0\%) }}$	O(\downarrow 3.0\%)	\dagger 8.0\% (Dilute ethanol-soluble extract)	x
81 Sophora flavescens Aiton							
CP RADIX SOPHORAE FLAVESCENTIS	0 (TLC)	x	O(${ }_{\text {d }}$ 11.0\%, Water)	O(\downarrow 8.0\%)	O(\downarrow 1.5\%)	${ }^{\uparrow} \mathbf{2 0 . 0 \%}$ (Water-soluble extract)	Matrine+Oxymatrine \uparrow 1.2\% (HPLC)
JP sophoram radix	\bigcirc	O (Stem, Foreign matter)	${ }^{\text {x }}$	O(${ }^{\text {6.0\%) }}$	O(${ }^{\text {1.5\%) }}$	x	x
82 VP ${ }^{\text {dophora japonica Linne }}$							
CP FLOS SOPHORAE	0 (TLC)	x	x	${ }^{x}$	x	${ }^{\dagger}$ 37.0\% (30\% Methanol-soluble extract)	Rutin \uparrow 6.0\% (HPLC)
* JP sophorae flos	$\bigcirc \mathrm{O}$ (TLC)	x	$\mathrm{O}(\downarrow 10.0 \%)$	x		x	x
KP sophoraeflos vp	O (TLC)	O (Foreign matter, Rutin)	x	O(\downarrow 9.0\%)	x	x	\hat{x}

[^1]
Table 5

Comparative table on TLC conditions of identification for crude drugs in CP, JP, KP and VP

Comparative Table on TLC Conditions of Identification for Crude Drugs in CP, JP, KP and VP

No. Latin name	TLC condition			
	(1) developing solvent	(2) detection	(3) color tone on TLC	(4) marker compounds
1 Achyranthes bidentata Blume				
CP RADIX ACHYRANTHIS BIDENTATAE	chloroform/ methanol (40 : 1)	phosphomolybdic acid TS, 110°		Oleanoic acid
KP ACHYRANTHIS RADIX	chloroform/methanol/ water (8:2:0.5)	1) UV 254 nm 2 2) sulfuric acid TS		20-hydroxyecdison
VP RADIX ACHYRANTHIS bidentatae	chloroform / methanol ($40: 1$)	phosphomolybdic acid in ethanol, $110^{\circ}, 10 \mathrm{~min}$		oleanoic acid
2 Aconitum carmichaeli Debeaux				
JP PROCESSI ACONITI RADIX	ethyl acetate / ethanol (99.5)/ ammonia water (28) (40 : 3 :2)	Dragendorff's TS	yellow-brown	benzoylmesaconone hydrobromide
3 Alpinia oxyphylla Miquel				
CP FRUCTUS ALPINIAE OXYPHYLLAE	n-hexane / ethyl acetate (9:1)	1) UV 254 nm 2) dinitrophenylhydrazine dilute TS	1) dark spot 2) orange-red	
VP FRUCTUS ALPINIAE OXYPHYLLAE	n-hexane / ethyl acetate (9:1)	UV 254 nm		
4 Anemarrhena asphodeloides Bunge				
CP RHIZOMA ANEMARRHENAE	benzene / acetone (9:1)	8% vanillin in ethanol/ sulfuric acid ($0.5: 5$), 100		sarsasapogenin
KP anemarrhenae rhizoma	chloroform/methanol/water (52:28:8)	sulfuric acid TS		anemasaponin B
VP RHIzoma anemarrhenae	benzene / acetone (9:1)	8% vanillin in ethanol/ sulfuric acid ($0.5: 5$), 100 ${ }^{\circ}, 5 \mathrm{~min}$		sarsasapogenin
5 Angelica dahurica Bentham et Hooker fil				
CP RADIX ANGELICA DAHURICAE	petroleum ether/ether (3:2)	UV 365 nm		imperatorin, isoimperatorin
vp radix angelica dahuricae	benzene / ethyl acetate (9:1)	UV 365 nm	blue fluorescent	
6 Astragalus membranaceus Bunge				
CP RADIX ASTRAGALI	chloroform/ methanol/ water (13:7:2)	1) 10% sulfuric acid in ethanol, 105° 2) UV 365 nm	1) brown 2) orange-yellow	astragloside IV
VP RADIX ASTRAGALI MEMBRANACEI	chloroform/methanol/ water (65:35:10)	10\% sulfuric acid in ethanol, $105^{\circ}, 5 \mathrm{~min}$		astragloside IV
Atractylodes lancea De Candolle, A. chinensis Koidzumi				
CP RHIZOMA ATRACTILODIS	petroleum ether / ethyl acetate (20:1)	p-dimethyaminobenzaldehyde ethanol in 10% sulfuric acid	muddy green	atractydin
VP RHIZOMA ATRACTILODIS	petroleum ether / ethyl acetate (20:1)	p-dimethyaminobenzaldehyde ethanol in 10% sulfuric acid		
8 Atractylodes ovata De Candolle				
CP RHIZOMA ATRACTYLODIS MACROCEPHALAE	petroleum ether / ethyl acetate (50:1)	5\% vanillin in sulfuric acid	pink	atractylon
VP RHIZOMA ATRACTYLODIS MACROCEPHALAE	petroleum ether / ethyl acetate (50:1)	1% vanillin in 5% sulfuric acid, 60°	pink	
9 Bupleurum falcatum Linne				
CP RADIX BUPLEURI	ethyl acetate / ethanol/ water (8:2:1)	2\% p-dimethyaminobenzaldehyde in 40% sulfuric acid $60^{\circ}, 365 \mathrm{~nm}$	yellow	saikosaponin a, d
JP BUPLEURIRADIX	chloroform/methanol/water (30:10:1)	sulfuric acid / ethanol (95) (1:1), $50^{\circ}, 5 \mathrm{~min}$	blue to blue-purple	saikosaponin a
KP BUPLEURIRADIX	chloroform/methanol/water (30:10:1)	sulfuric acid / ethanol (95) (1:1), $50^{\circ}, 5 \mathrm{~min}$	blue to blue-purple	saikosaponin a
VP RADIX BUPLEURI	ethyl acetate / ethanol/water (8:2:1)	$5 \% p$-dimethyaminobenzaldehyde in 40% sulfuric acid $60^{\circ}, 365 \mathrm{~nm}$		
10 Carthamus tinctorius Linne				
CP FLOS CARTHAMI	ethyl acetate / formic acid/water/methanol ($7: 2: 3: 0.4$)			
VP FLOS CARTHAMI TINCTORII	ethyl acetate / formic acid/water (8:1:1)	put in a chamber pre-saturated with the vapour of ammonia	1) 4 brownish-yellow spots	
			2) 2 greenish-yellow spots	
11 Cimicifuga heracleifolia Komarov				
CP RHIZOMA CIMICIFUGAE	benzene / ethyl acetate / formic acid ($6: 1: 0.5$)	UV 365 nm		isoferulic acid
12 Cinnamomum cassia Blume				
CP CORTEX CINNAMOMI	petroleum ether / ethyl acetate (17:3)	ethanolic 2,4-dinitrophenylhydrazine TS		cinnamaldehyde
JP CINNAMOMI CORTEX	hexane / ethyl acetate (2:1)	1) UV 254 nm 2) 2,4-dinitrophenylhydrazine TS	1) purple 2) yellow orange	
KP CINNAMOMI CORTEX	hexane / ethyl acetate ($2: 1$)	1) UV 254 nm 2) 2,4 -dinitrophenylhydrazine TS	1) purple 2) yellow orange	
VP CORTEX CINNAMOMI	n -hexane / chloroform / ethyl acetate (4:1:1)	2,4-dinitrophenylhydrazine	5 orange spots	cinnamic aldehyde
13 Cornus officinalis Siebold et Zuccarini				
CP FRUCTUS CORNI	toluene / ethyl acetate / formic acid (20:4:0.5)	1) 10% sulfuric acid in ethanol, 110° 2) UV 365 nm	1) purplish-red 2) yellow orange fluorescent	ursolic acid
JP CORNI FRUCTUS	ethyl acetate / water / formic acid (6:1:1)		red-purple	loganin
KP CORNI FRUCTUS	ethyl acetate / water / formic acid ($6: 1: 1$)	p-anisaldehyde-sulfuric acid $\mathrm{TS}, 90^{\circ}, 3 \mathrm{~min}$	red-purple	loganin
VP FRUCTUS CORNI OFFICINALIS	cyclohexane/chloroform/ethyl acetate (20:5:8)	10% sulfuric acid in ethanol, $110^{\circ}, 5-7 \mathrm{~min}$	purplish-red	ursolic acid
14 Curcuma longa Linne				
CP RHIZOMA CURUCUMAE LONGAE	chloroform/ methanol/formic acid ($96: 4: 0.7$)	UV 365 nm		curcumin
JP CURCUMAE RHIZOMA	ethyl acetate/ hexane/acetic acid (100) (70:30:1)		yellow	
KP Curcumae longat rhizoma	chloroform/methanol/formic acid (96:4:0.7)			curcumin
VP RHIZOMA CURUCUMAE LONGAE	chloroform/acetic acid (9:1)	3\% boric acid / 10\% oxalic acid (3:1)	3 spots 1) brick red 2) orange 3) yellow	
15 Cyperus rotundus Linne				
CP RHIZOMA CYPERI	benzene / ethyl acetate / glacial acetic acid (92:5:5)	1) 254 nm 2 2) 2,4-dinitrophenylhydrazine TS	1) dark blue 2) orange-red	α-cyperone

No.	Latin name	TLC condition (1) developing solvent	(2) detection	(3) color tone on TLC	(4) marker compounds
16 Ephedra sinica Stapt					
	CP HERBA EPHEDRAE	chloroform/ methanol/ concentrated ammonia ($20: 5: 0.5$)	ninhydrin TS, 105	red	ephedrine hydrochloride
	JP EPHEDRAE HERBA	1-butanol/water/acetic acid (100) ($7: 2: 1$)	ninhydrin-ethanol TS ($1 \rightarrow 50$), 105', 5 min	red-purple	
	KP EPhedrae herba	n-butanol/water / acetic acid (7:2:1)	2% ninhydrin-ethanol TS, $105^{\prime}, 10 \mathrm{~min}$	reddish purple	
	vp herba ephedrae	chloroform/methanol/ammonia (20:5:0.5)	ninhydrin TS, $105^{\circ}, 5 \mathrm{~min}$		ephedrine
17 Epimedium koreanum Nakai					
	CP HERBA EPIMEDII	ethyl acetate / butanone/ formic acid/water (10: $1: 1: 1$)	1) UV 365 nm 2) Alminium chloride TS , UV 365 nm	2) orange red fluorescent	icarin
	JP EPIMEDII HERBA	ethyl acetate / ethanol (99.5)/ water (8: $2: 1$ 1)	UV 254 nm	dark purple	icarin
	KP EPIMEDII HERBA	ethyl acetate / methylethylketone/formic acid/water (10:1:1:1)	1) UV 365 nm 2) Alminium chloride TS , UV 365 nm	1) dark reddish ${ }^{2}$) orange red	icarin
	VP herba epimedil	ethyl acetate / butanone / formic acid / water (10:1:1:1)	1) UV 365 nm 2) Alminium chloride in ethanol, UV 365 nm	1) dark red 2) orange	icarin
18 Evodia rutaecarpa Bentham					
	CP FRUCTUS EVODIAE	cyclohexane/ethyl acetate/methanol/trihexylamine (19:5:1:1)	10\% sulfuric acid in ethanol		rutaecarpine
	KP EVODIAE FRUCTUS	hexane / ethyl acetate (3:2)	Dragendorff's TS		evodiamine
19 Foeniculum vulgare Miller					
	CP FRUCTUS FOENICULI	petroleum ether / ethyl acetate (17 : 2.5)	dinitrophenylhydrazine TS	orange-red	4-methoxybenzaldehyde
	JP FOENICULI FRUCTUS	hexane / ethyl acetate (20:1)	UV 254 nm	dark purple	
	KP FOENICULIFRUCTUS	hexane / ethyl acetate (20:1)		dark purple	
20 Forsythia suspensa Vahl					
	CP FRUCTUS FORSYTHIAE	benzene / acetone/ethyl acetate / formic acid/water (20: $25: 30: 3: 3)$	1) UV 365 nm 2) vanillin in sulfuric acid TS		
	VP FRUCTUS FORSYTHIAE	cyclohexane/ chloroform / benzene / methanol (5:3:5:1)	5% frerric chloride in ethanol (acidifide with HCl)		
21 Fritilaria verticillata Willdenow var. thunbergii Baker					
	CP BULBUS FRITILLAIAE THUNBERGII	ethyl acetate / methanol/strong ammonia TS (17 : $2: 1$)	dilute potassium iodobismuthate TS		peimine, peininine
	JP FRITILLARIAE BuLbus	ethyl acetate / methanol/ammonia TS (17:2:1)	Dragendorff's TS	yellow-red	
	VP BuLbus Fritillaiae thunbergil	ethyl acetate / methanol/ concentrated ammonia solution (17:2:1)	Dragendorff reagent		
22 Gardenia jasminoides Ellis					
	CP FRUCTUS GARDENIAE	ethyl acetateacetone/acetone / formic acid/water (5:5:1:1)	10\% sulfuric acid in ethanol, 110°		geniposide
	JP Gardeniae fructus	ethyl acetate / methanol (3:1)	4-methoxybenzaldehyde-sulfuric acid TS, $105{ }^{\circ}, 10 \mathrm{~min}$	dark purple	geniposide
	KP GARDENIAE FRUCTUS	ethyl acetate / methanol (3:1)	p -anisaldehyde-sulfuric acid $\mathrm{TS}, 105^{\circ}, 10 \mathrm{~min}$	dark purple	geniposide
	VP FRUCTUS GARDENIAE	ethyl acetateacetone / acetone / formic acid / water (5 5 5:1:1)	ethanol/ sulphuric acid (5:1), 100 ${ }^{\circ}$, 10 min		geniposide
23 Glycyrrhiza uralensis Fisher, G. glabra Linne					
	CP RADIX ET RHIZOMA GLYCYRRHIZAE	ethyl acetate/ formic acid/glacial acetic acid/ water (15:1:1:2)	10\% sulfuric acid in ethanol, 105°, UV 365 nm	yellow orange fluorescent	ammonium glycyrrhizinate
	JP GLYCYRRHIZAE RADIX	1-butanol/ water / acetic acid (100) (7:2:1)	UV 254 nm		glycyrrhizinic acid
	KP GLYCYRRHIZAE RADIX	n -butanol/ water/acetic acid (7:2:1)	UV 254 nm		glycyrrhizinic acid
	VP RADIX GLYCYRRHIZAE	petroleum ether / benzene/ ethyl acetate/glacial acetic acid (10:20:7:0.5)	10\% phosphomolybdic acid in ethanol, $105^{\circ}, 5 \mathrm{~min}$		glycyrrhetic acid
24 Leonurus sibiricus Linne.					
	CP HERBA LEONURI	n -butanol / hydrochloric acid / water (4:1:0.5)	dilute potassium iodobismuthate TS		stachydrine hydrochloride
25 Lonicera japonica Thunberg					
	CP FLOS LONICERAE JAPONICAE	butyl acetate / formic acid / water (7: $2.5: 2.5$)	UV 365 nm		chlorogenic acid
26 Magnolia officinalis Rehder et Wilson var. biloba Rehder et Wilson					
	CP CORTEX MAGNOLIAE OFFICINALIS	benzene / methanol (27 : 1)	1% vanillin in sulfuric acid, 100		magnolol, honokiol
	JP MAGNOLIAE CORTEX	1-butanol/water/acetic acid (100) ($4: 2: 1$)	Dragendorff's TS	yellow	
	KP MAGNOLIAE CORTEX	n-butanol/wate / acetic acid ($4: 2: 1$)	Dragendorff's TS	yellow	
	VP CORTEX MAGNOLIAE OFFICINALIS	benzene / methanol (27 : 1)	1% vanillin in sulfuric acid, $100{ }^{\circ}, 10 \mathrm{~min}$		magnolol, honokiol
27 Mentha arvensis Linne var. piperascens Malinvaud					
	CP HERBA MENTHAE	benzene / ethyl acetate (19: 1)	vanillin in sulfuric acid TS / ethanol (1:4), $10{ }^{\circ}$		menthol
	vp herba menthae arvensis	ethyl acetate / toluene (5:95)	anisaldehyde solution, $100-105^{\circ}, 5-10 \mathrm{~min}$		menthol
28 Morus alba Linne					
	CP CORTEX MORI	polyamide TLC, acetic acid	UV 365 nm		
29 Myristica fragrans Houttuyn					
	CP SEMEN MYRISTICAE	petroleum ether / benzene (1:1)	anisaldehyde TS, 105^{\prime}, several min		
	KP MYRISTICAE SEMEN	chloroform / n -hexane ($7: 3$)	expose the plate to iodine vapor	yellow	
	VP SEmen myristicae	petroleum ether / benzene (1:1)	anisaldehyde solution, 105^{\prime}, several min		
30 Nelumbo nucifera Gaertner					
	CP SEMEN NELUMBINIS	n-hexane / acetone (7 : 2)	5% vanillin in 10% sulfuric acid ethanol, 105		
31 Notopterygium incisum Ting ex H. T. Chang, \mathbf{N}. forbesii Boissieu					
JP NOTOPTERYGII RHIZOMA		ODS TLC, methanol/ water (9:1)	1) UV 365 nm 2) UV 254 nm	1) blueish white fluorescent	
				2) dark purple	

CP RADIX PAEONIAE ALB
JP PAEONIAE RADIX
VP PAEONIAE RADIX
33 Paeonia suffruticosa Andrew CP CORTEX MOUTAN JP MOUTAN CORTEX KP MOUTAN CORTEX RADICIS VP CORTEX PAEONIA SUFFURUTICOSAE
chloroform/ethyl acetate / methanol/formic acid ($40: 5: 10: 0.2$)
acetone / ethyl acetate / acetic acid (100) (10: $10: 1$) acetone / ethyl acetate / acetic acid (100) (10: $10: 1$) chloroform / ethyl acetate / methanol / formic acid ($40: 5: 10: 0.2$)
cyclohexane/ ethyl acetate $(3: 1)$
hexane / ethyl acetate ($1: 1$) hexane / ethyl acetate ($1: 1$)
cyclohexane / ethyl acetate (3 :
34 Panax ginseng C. A. Meyer
CP RADIX ET RHIZOMA GINSENG
JP GINSENG RADIX
KP GINSENG RADIX ALBA
VP RADIX GINSENG
35 Platycodon grandiflo
35 Platycodon grandiflorum
Pogostemon cablin Benth
36 Pogostemon cablin Bentham
CP HERBA POGOSTEMONIS
VP HERBA POGOSTEMONIS
37 Prunella vulgaris Linne var. lilacina Naka CP SPICA PRUNELLAE VP SPICA PRUNELLAE
hloroform / ethyl acetate / methanol/ water ($15: 40: 22: 10$)
hloroform/methanol/water (13:7:2)
hloroform/methanol/water (13:7:2)

Prunus armeniaca Linne, P. armeni
JP ARMENIACAE SEMEN
KP ARMENIACAE SEMEN
vp SEmEN ARMENIACAE AMARUM
$\begin{array}{ll}\text { JP ARMENIACAE SEMEN } & \text { ethyl acetate } / \text { methanol } / \text { water }(7: 3: 1) \\ \text { KP ARMENIACAE SEMEN } & \text { ethyl acetate } / \text { methanol } / \text { water }(7: 3: 1) \\ \text { Chloroform } / \text { ethyl acetate } / \text { methanol } / \text { water }(15: 40: 22: 10)\end{array}$
39 Prunus persica Batsch, P. persica Batsch var. da KP PERSICAE SEMEN
40 Rheum palmatum Linne CP RADIX ET RHIZOMA RHEI JP RHEI RHIZOMA KP RHEI RHIZOMA Schisandra chinensis Baillon CP FRUCTUS SCHISANDRAE CHINENSIS JP SCHISANDRAE FRUCTUS
KP SCHISANDRAE FRUCTUS
VP FRUCTUS SCHISANDRAE
42 Scutellaria baicalensis Georgi JP scutellariae radix JP SCUTELLARIAE RADIX
43 Strychnos nux-vomica Linne CP SEMEN STRYCHNI VP SEMEN STRYCHN
44 Syzygium aromaticum Merrill et Perry CP FLOS CARYOPHYLLI
45 Trichosanthes kirilowii Maximowicz CP RADIX TRICHOSANTHIS VP RADIX TRICHOSANTHIS 46 Jing Zingireris RHIZOMA KP ZINGIBERIS RHIZOMA
47 Zizyphus jujuba Miller var. inermis Rehder 47 Zizyphus jujuba Miller
chloroform / ether ($1: 1$) \qquad
etroleum ether / ethyl acetate / glacial acetic acid ($95: 5: 0.2$)
cyclohexane/chloroform/ethyl acetate/gracial acetic acid (20:5:8:0.5) cyclohexane / chloroform / ethyl acetate / gracial acetic acid ($20: 5: 8: 0.5$) ansu Maximowicz
chloroform / ethyl acetate / methanol/ water ($15: 40: 22: 10$)
thyl acetate / methanol / water $(7: 3: 1)$
ethyl acetate / methanol/ water (7:3:1)
ethyl acetate / 1-propanol / water/acetic acid (100) (40:40:30:1) ethyl acetate / 1 -propanol/ water / acetic acid ($40: 40: 30: 1$ petroleum ether/ethyl formate/formic acid ($75: 25: 1$)
toluene / ethyl acetate /methanol/formic acid (10:3:1:2)

1-butanol / water/acetic acid ($4: 2: 1$)
chloroform / methanol / glacial acetic acid (20:10:3)

5% vanillin in sulfuric acid	baeonifh-purplerin	
4-methoxybenzaldehyde-sulfuric acid $\mathrm{TS}, 105^{\circ}, 5 \mathrm{~min}$	purple-red	paeoniflorin
p-anisaldehyde-sulfuric acid $\mathrm{TS}, 105^{\prime}, 5 \mathrm{~min}$	purple-red	paeoniflorin
5% vanillin in sulfuric acid		

	bluish-brown	paeonol
paeonol		

UV 254 nm	paeonol
paeonol	

5% frerric chloride in ethanol paeonol

1) $\mathbf{1 0 \%}$ sulfuric acid in ethanol, 105°, 2) UV $\mathbf{3 6 5} \mathrm{nm}$ dilute sulfuric acid, $110^{\circ}, 5 \mathrm{~min}$	red-purple	ginsenoside Rb1, Re, Rf, Rg1 ginsenoside Rg1
dilute sulfuric acid, $110^{\circ}, 5 \mathrm{~min}$	red-purple	ginsenoside Rg1
10\% sulfuric acid in ethanol (96\%), 105°, several min, UV 365 nm		

$\begin{array}{lll}\text { Hiute sulfuric acid, } 110^{\circ}, 5 \mathrm{~min} & \text { red-purple } & \text { ginsenoside Rg1 }\end{array}$
10% sulfuric acid in ethanol (96%), 105°, several min, UV 365 nm
10% sulfuric acid in ethanol, 105°

5% frerric chloride in ethanol 1% vanillin in sulfuric acid, 120°	purplish-blue	patchouli alcohol
10% sulfuric acid in ethanol, 100°, UV 365 nm 10% sulfuric acid in ethanol, $100^{\circ}, \mathrm{UV} 366 \mathrm{~nm}$		ursolic acid
phosphomolybdic acid in sulfuric acid, 105° dilute sulfuric acid, $105^{\circ}, 10 \mathrm{~min}$ dilute sulfuric acid, $105^{\circ}, 10 \mathrm{~min}$ phosphomolybdic acid in sulfuric acid, $105^{\circ}, 10 \mathrm{~min}$	brown to dark green brown to dark brown	amygdalin amygdalin
dilute sulfuric acid, $105^{\circ}, 10 \mathrm{~min}$ dilute sulfuric acid, $105^{\circ}, 10 \mathrm{~min}$	brown to dark green brown to dark brown	amygdalin
UV 365 nm UV 365 nm UV 365 nm UV 365 nm	orange fluorescent red fluorecent red fluorecent yellow fluorescent	rhein sennoside A sennoside A emodin

petroleum ether/ethyl formate/formic acid (15:5:1)	UV 254 nm		deoxyschisandorin
hexane / ethyl acetate / acetic acid (100) (10:10:1)	UV 254 nm	blue-violet	schisandorin
hexane/ethyl acetate / acetic acid (10: $10: 1$)	UV 254 nm	bluish-purple	schisandorin
petroleum ether/ethyl formate/formic acid (15:5:1)	UV 254 nm		

UV 365 nm iron (III) chloride hexahydrate in methanol (1 in 100) ferric chloride in methanol (1 in 100)	dark-green dark-green	baicalin, baicalein baicalin baicalin
potassium iodobismuthate		brucine
Dragendorff reagent		strychnine, brucine
5% vanillin in sulfuric acid, 105°		eugenol
ninhydrin TS, 105°		L-citrulline
ninhydrin in ethanol, 105°		
4-dimethylbenzaldehyde TS, $105^{\circ}, 5 \mathrm{~min}$	green	6 -gingerol
2,4-dinitrophenylhydrazine TS, $105{ }^{\circ}$, 10 min	brown	6 -gingerol

* Registered in the Japanese Herbal Medicine Codex (JHMC) 1989.

Table 6

Comparative table on assay conditions for crude drugs in CP, JP, KP and VP

No. Latin name	Assay (\uparrow : Not less than)	(1) method	(2) developing solvent	(3) detection
19 Leonurus japonicus Houtt.				
CP HERBA LEONURI	Stachydrine $\uparrow 0.50 \%$	TLC (Slica gel TLC)	ethyl acetate / 1-butanol / hydrochloric acid (1:8:3)	1) 105° 2) UV 510 nm
20 Lonicera japonica Thunberg				
CP FLOS LONICERAE	Chlorogenic acid \uparrow 1.5\%	HPLC (ODS column)	acetonitrile / 0.4% phosphoric acid solution ($13: 87$)	UV 327 nm
21 Magnolia officinalis Rehder et Wilson var. biloba Rehder et Wilson				
CP CORTEX MAGNOLIAE OFFICINALIS	Magnolol+Honokiol \uparrow 2.0\%	HPLC (ODS column)	methanol/ water (78 : 22)	UV 294 nm
JP MAGNOLIAE CORTEX	Magnolol \uparrow 0.8\%	HPLC (ODS column, I.D. 4-6 mm x $15-25 \mathrm{~cm}, 5-10 \mathrm{~mm}$)	1) water / acetonitrile / acetic acid (50:50:1) 2) 20° 3) adjust flow rate to elute magnolol at ca. 14 min	UV 289 nm
KP magnoliae cortex	Magnolol \uparrow 0.8\%	HPLC (ODS column, I.D. 4-6 mm x $15-25 \mathrm{~cm}, 5-10 \mathrm{~mm}$)	1) water / acetonitrile / acetic acid (50:50:1) 2) 20° 3) adjust flow rate to elute magnolol at ca. 14 min	UV 289 nm
22 Paeonia lactiflora Pallas				
CP RADIX PAEONIAE ALBA	Paeoniflorin \uparrow 1.6\%	HPLC (ODS column)	acetonitrile / 0.1\% phosphoric acid solution (14:86)	UV 230 nm
JP PAEONIAE RADIX	Paeoniflorin \uparrow 2.0\%	HPLC (ODS column, I.D. $4.6 \mathrm{~mm} \times$ $15 \mathrm{~cm}, 5 \mathrm{~mm}$)	1) water / acetonitrile / phosphoric acd (850:150:1) 2) 20° 3) adjust flow rate to elute paeoniflorin at ca. 10 min	UV 232 nm
KP PAEONIAE RAdIX	Paeoniflorin \uparrow 2.0\%	HPLC (ODS column, I.D. 4-6 mm x $15-25 \mathrm{~cm}, 5-10 \mathrm{~mm}$)	1) water / acetonitrile (4:1) 2) 20° 3) adjust flow rate to elute paeoniflorin at ca. 10 min	UV 230 nm
23 Paeonia suffruticosa Andrews				
CP CORTEX MOUTAN	Paeonol \uparrow 1.2\%	HPLC (ODS column)	methanol/ water (45: 55)	UV 274 nm
JP MOUTAN CORTEX	Paeonol \uparrow 1.0\%	HPLC (ODS column, I.D. 4-6 mm x $15-25 \mathrm{~cm}, 5-10 \mathrm{~mm}$)	1) water / acetonitrile / acetic acid (100)(65:35:2) 2) $20^{\circ} 3$ 3) adjust flow rate to elute paeonol at ca. 14 min	UV 274 nm
KP MOUTAN CORTEX RADICIS	Paeonol \uparrow 1.0\%	HPLC (ODS column, I.D. 4-6 mm x $15-25 \mathrm{~cm}, 5-10 \mathrm{~mm}$)	1) water / acetonitrile / acetic acid (100) (65:35:2) 2) 20° 3) adjust flow rate to elute paeonol at ca. 14 min	UV 274 nm
VP CORTEX PAEONIA SUFFURUTICOSAE	Paeonol \uparrow 1.0\%	Absorption	water	UV 274 nm
24 Panax ginseng C. A. Meyer				
CP RADIX ET RHIZOMA GINSENG	Ginsenoside Rg1+Re $\uparrow \mathbf{0 . 3 0 \%}$, Ginsenoside Rb1 $\uparrow \mathbf{0 . 2 0 \%}$	HPLC (ODS column)	(A $29:$ B 71), 70-100 min (A 29-40 : B 71-60)	UV 203 nm
JP GINSENG RAdIX	Ginsenoside Rg1 $\uparrow \mathbf{0 . 1 0 \%}$, Ginsenoside Rb1 $\uparrow \mathbf{0 . 2 0 \%}$	HPLC (ODS column, I.D. $4.6 \mathrm{~mm} \times$ $15 \mathrm{~cm}, 5 \mathrm{~mm}$)	1) water / acetonitrile (7:3) 2) 40° 3) adjust flow rate to elute Ginsenoside Rb1 at ca. 20 min	UV 203 nm
25 Platycodon grandiflorum A. De Candolle				
CP RADIX PLATYCODI	Total saponin \uparrow 6.0\%	Dry weight	methanol	Dry weight (105)
26 Pogostemon cablin Bentham				
CP HERBA POGOSTEMONIS	Patchouli alcohol \uparrow 0.10\%	GC		
27 Polygonatum sibiricum Redoute				
CP RHIZOMA POLYGONATI	Glucose $\uparrow 7.0 \%$	Absorption	80\% ethanol	UV 582 nm
28 Prunella vulgaris Linne var. lilacina Nakai				
CP SPICA PRUNELLAE	Ursolic acid \uparrow 0.12\%	HPLC (ODS column)	methanol/water (88: 12)	UV 210 nm
29 Prunus armeniaca Linne, P. armeniaca Linne var. ansu Maximowicz				
CP SEMEN ARMENIACAE AMARUM	Amygdalin \uparrow 3.0\%			
KP ARMENIACAE SEMEN	Amygdalin \uparrow 3.0\%	HPLC (ODS column, I.D. 4-6 mm x $15-25 \mathrm{~cm}, 5-10 \mathrm{~mm}$)	1) methanol / water (20:80) 2) 20° 3) $1.0 \mathrm{~mL} / \mathrm{min}$	UV 214 nm
KP PERSICAE SEMEN	Amygdalin $\uparrow 0.5 \%$	HPLC (ODS column, I.D. 4-6 mm x $15-25 \mathrm{~cm}, 5-10 \mathrm{~mm}$)	1) methanol / water (20:80) 2) $\left.20^{\circ} \quad 3\right) 1.0 \mathrm{~mL} / \mathrm{min}$	UV 214 nm
31 Rheum palmatum Linne				
CP RADIX ET RHIZOMA RHEI	Aloeemodin+Rhein+Emodin+ Chrvsophanol+Phvscion \uparrow 1.5\%	HPLC (ODS column)	methanol/ 0.1% phosphoric acid solution (85: 15)	UV 254 nm
JP RHEl RHIzoma	Sennoside A $\uparrow 0.25 \%$	HPLC (ODS column, I.D. 4-6 mm x $15-25 \mathrm{~cm}, 5-10 \mathrm{~mm}$)	1) dilute acetic acid (100) (1 in 80) / acetonitrile (4:1) 2) $\left.40^{\circ} \quad 3\right)$ adjust flow rate to elute sennoside A at ca. 15 min	UV 340 nm
KP RHEl rhizoma	Sennoside A $\uparrow 0.25 \%$	HPLC (ODS column, I.D. 4-6 mm x $15-25 \mathrm{~cm}, 5-10 \mathrm{~mm}$)	1) dilute acetic acid (100)(1 in 80) / acetonitrile (4:1) 2) $40^{\circ} \quad 3$) adjust flow rate to elute sennoside A at ca. 15 min	UV 340 nm
32 Schisandra chinensis Baillon				
CP FRUCTUS SCHISANDRAE CHINENSIS	Schisandrin \uparrow 0.40\%	HPLC (ODS column)	methanol/water (13:7)	UV 250 nm
33 Scutellaria baicalensis Georgi				
CP RADIX SCUTELLARIAE	Baicalin \uparrow 9.0\%	HPLC (ODS column)	methanol/ water / phosphoric acid (47 : $53: 0.2$)	UV 280 nm
JP SCUTELLARIAE RADIX	Baicalin \uparrow 10.0\%	HPLC (ODS column, I.D. 4-6 mm x $15-25 \mathrm{~cm}, 5-10 \mathrm{~mm}$)	1) dilute phosphoric acid (1 in 146) / acetonitrile (18:7) 2) $50^{\circ} 3$) adjust flow rate to elute baicalin at ca. 6 min	UV 277 nm
KP SCUTELLARIAE RADIX	Baicalin \uparrow 10.0\%	HPLC (ODS column, I.D. 4-6 mm x $15-25 \mathrm{~cm}, 5-10 \mathrm{~mm}$)	1) dilute phosphoric acid (1 in 146)/acetonitrile (18:7) 2) 50° 3) adjust flow rate to elute baicalin at ca. 6 min	UV 277 nm
vP RADIX SCUTELLARIAE	Flavonoid calculate as Baicalin \uparrow 4.0\%	Absorption	ethanol	UV 279 nm

Section 3

Table 7-13 complied by EWG III for Lists of CRS and RMPM

Table 7 to 13 provide lists of CRS, reference sample (for Japan only) and RMPM from any of the four pharmacopoeias.

Table 7, Table 9 and Table 10 are lists of CRS in JP, KP and VP respectively. CRS stands for Chemical Reference Standards certified by the government of each country. Information on CRS described in each list includes names of chemical compound, purity, data on IR, UV, mp, HPLC, TCL, ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$, information source, for which test/assay reference standard is used, for which crude drug CRS is applied, and published reference (e.g. published paper in a peer-reviewed journal).

Table 8, which is applicable to JP only, is the list of reference sample recorded in JP. In Japan, reference sample refers to chemical compounds that are not certified by the government but regulated by the description of JP. It is sold by reagent companies in Japan. Information in this table includes the names of compound, molecular formula, CAS NO., HPLC and TLC condition, Latin name of crude drug, purchase information and Japanese name of crude drugs.

Table 11, Table 12 and Table 13 are lists of RMPM in CP, KP and VP respectively. Japan does not use RMPM as a reference standard. RMPM refers to the Reference of Medicinal Plant Materials, which means that instead of chemical compounds, the whole crude drug from only a certain species is regarded as a standard reference for laboratory test and assay. The information in the lists of RMPM includes RMPM name, scientific name of the standard species and family name of the standard species.

Table 7

List of CRS in Japanese pharmacopoeia

List of CRS in Japanese Pharmacopoeia (JP)

Compound	Purity (\%)	$\begin{gathered} \mathrm{IR} \\ \left(\mathrm{~cm}^{-1}\right) \end{gathered}$	UV λ max nm (E1\% 1 cm)	mp	HPLC	TLC Rf value (1: Dev. solv., 2: Detect)	${ }^{1} \mathrm{H}$-NMR	${ }^{13} \mathrm{C}$-NMR	Available from	Reference Standard for	Applied to	References
Glycyrrhizinic acid (Glycyrrhizic acid, Glycyrrhizin)	99.7	$\begin{aligned} & \hline 3400, \\ & 2990, \\ & 1720, \\ & 1670, \\ & 1460, \\ & 1275, \\ & 1220, \\ & 1170, \\ & 1115, \\ & 1080, \\ & 1050, \\ & 970, \\ & 910 \\ & \hline \end{aligned}$	251			$\begin{aligned} & \text { O.23 [1: 1-BuOH/ } \\ & \mathrm{HzO/AcOH} \\ & (7: 2: 1), 2: \mathrm{UV} 254 \\ & \mathrm{~nm}, \text { dil. } \mathrm{H} 2 \mathrm{SO} 4, \\ & \left.105^{\circ} \mathrm{C}, 10 \mathrm{~min}\right] \end{aligned}$			Reference Standard Prepared by Society of Japanese Pharmacopoeia $30 \mathrm{mg}, 35,700 \mathrm{JPY}$	TLC (identification), HPLC (assay)	GLYCYRRHIZAE RADIX, GLYCYRRHIZAE RADIX PULVERATA	Bull. Natl. Inst. Health Sci ., 119, 93-96 (2001)
Baicalin	99.5	$\begin{aligned} & 3385, \\ & 1728, \\ & 1662, \\ & 1611, \\ & 1575 \end{aligned}$	277.2	210.4			$4.06(1 \mathrm{H}), 5.24(1 \mathrm{H}), 5.29(1 \mathrm{H})$, $5.49(1 \mathrm{H}), 7.001(1 \mathrm{H}), 7.004$ $(1 \mathrm{H}), 7.57-7.62(3 \mathrm{H}), 8.06-8.07$ $(2 \mathrm{H}), 12.6(1 \mathrm{H})$.	$\begin{aligned} & 71.3(\mathrm{CH}), 72.7 \text { (CH), } 75.2(\mathrm{CH}), 75.5 \\ & (\mathrm{CH}), 93.7(\mathrm{CH}), 99.9(\mathrm{CH}), 104.8(\mathrm{CH}), \\ & 106.1(\mathrm{C}), 126.4(\mathrm{CH}), 129.1(\mathrm{CH}), \\ & 130.6 \text { (C), } 130.8(\mathrm{C}), 132.0(\mathrm{CH}), 146.8 \\ & \text { (C), } 149.2(\mathrm{C}), 151.3(\mathrm{C}), 170.0(\mathrm{C}), \\ & 182.5 . \end{aligned}$	Reference Standard Prepared by Society of Japanese Pharmacopoeia $30 \mathrm{mg}, 29,000 \mathrm{JPY}$	TLC (identification), HPLC (component determination)	SCUTELLARIAE RADIX, SCUTELLARIAE RADIX PULVERATA	$\begin{aligned} & \text { IYAKUHIN } \\ & \text { KENKYU , } 31 \text { (7), } \\ & 465-470 \text { (2000) } \end{aligned}$
Paeoniflorin	>99.5	$\begin{aligned} & 3414, \\ & 1713, \\ & 1280, \\ & 1076 \end{aligned}$	$\begin{gathered} 231.6 \\ (260.3) \end{gathered}$		ODS column (I.D. 4.6 $\mathrm{mm} \times 15 \mathrm{~cm}$), detector 232 nm , Column temp $20^{\circ} \mathrm{C}$, $\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{3} \mathrm{PO}_{4}$ (850:150:1)	0.30-0.33 [1: acetone/EtOAc/ AcOH (10:10:1), 2: 4-methoxybenz aldehyde- $\mathrm{H} 2 \mathrm{SO}_{4}$, $\left.105^{\circ} \mathrm{C}, 5 \mathrm{~min}\right]$			Reference Standard Prepared by Society of Japanese Pharmacopoeia $20 \mathrm{mg}, 33,900 \mathrm{JPY}$	TLC (identification), HPLC (component determination)	PAEONIAE RADIX, PaEONIAE RADIX PULVERATA	IYAKUHIN KENKYU , 29 (10), 725-729 (1998)
Swertiamarin	99.7	$\begin{aligned} & 3346, \\ & 169, \\ & 1619, \\ & 1282, \\ & 1068, \\ & 1013 \end{aligned}$	$\begin{gathered} \hline 236.2 \\ (257.2) \end{gathered}$		ODS column (I.D. 4.6 $\mathrm{mm} \times 15 \mathrm{~cm}$), column temp $50^{\circ} \mathrm{C}, \mathrm{H}_{2} \mathrm{O} /$ $\mathrm{CH}_{3} \mathrm{CN}$ (91:9), detector 236 nm , adjust flow rate to elute Paeoniflorin at ca. 12 min	$\begin{aligned} & \text { 0.73 [1: EtOAc /1- } \\ & \text { ProH/H2O (6:4:3), } \\ & \text { 2: UV } 254 \mathrm{~nm}] \end{aligned}$	1.86 ($1 \mathrm{H}, \mathrm{brd}, \mathrm{J}=13.5 \mathrm{~Hz}$), 2.03 (1 H, brdd, $J=5.2,13.5 \mathrm{~Hz}$), 3.03 $(1 \mathrm{H}, \mathrm{brdd}, J=1.4,7.0 \mathrm{~Hz}), 3.34$ ($1 \mathrm{H}, \mathrm{dd}, J=8.7,10.5 \mathrm{~Hz}$), 3.49 $(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=10.5 \mathrm{~Hz}), 3.52(1 \mathrm{H}, \mathrm{m})$, $3.61(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=10.5 \mathrm{~Hz}), 3.75$ ($1 \mathrm{H}, \mathrm{dd}, J=2.0,12.5 \mathrm{~Hz}$), 3.92 ($1 \mathrm{H}, \mathrm{dd}, J=5.1,12.5 \mathrm{~Hz}$), 4.42 (1 H, brdd, $J=5.2,13.5 \mathrm{~Hz}$), 4.70 $(1 \mathrm{H}, \mathrm{brd}, J=13.5 \mathrm{~Hz}), 4.84(1 \mathrm{H}$, d, $J=8.7 \mathrm{~Hz}$), $5.29(1 \mathrm{H}, \mathrm{m}), 5.45$ $(2 \mathrm{H}, \mathrm{m}), 5.75(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.4 \mathrm{~Hz})$, $7.73(1 \mathrm{H}, \mathrm{s})$.	$\begin{aligned} & 171.6(\mathrm{C}), 157.9(\mathrm{CH}), 134.4(\mathrm{CH}), \\ & 123.9(\mathrm{CH}), 109.2(\mathrm{C}), 102.2(\mathrm{CH}), \\ & 101.6(\mathrm{CH}), 79.2(\mathrm{CH}), 78.3(\mathrm{CH}), 75.2 \\ & (\mathrm{CH}), 72.3(\mathrm{CH}), 68.4(\mathrm{CH} 2), 66.0(\mathrm{C}), \\ & 63.4(\mathrm{CH} 2), 52.8(\mathrm{CH}), 36.3(\mathrm{CH} 2) . \end{aligned}$	Reference Standard Prepared by Society of Japanese Pharmacopoeia $20 \mathrm{mg}, 34,100 \mathrm{JPY}$	TLC (identification), HPLC (component determination)	SWERTIAE HERBA, SWERTIAE HERBA PULVERATA	IYAKUHIN KENKYU , 32 (3), 118-123 (2001)
Sennoside A	98.7	$\begin{aligned} & 3419, \\ & 1714, \\ & 1637, \\ & 1074 \end{aligned}$	$\begin{aligned} & 334(171.9 \\ & \pm 0.5), 270 \\ & (225.9 \pm \\ & 0.7) \end{aligned}$	$\begin{aligned} & 217.2 \pm \\ & 0.6 \end{aligned}$	ODS column (I.D. 4.6 $\mathrm{mm} \times 15 \mathrm{~cm}$), column temp $50^{\circ} \mathrm{C}, \mathrm{pH} 5$, $1 \mathrm{~mol} / \mathrm{I}$ AcOH-ACONH4 Buffer (1in10)/ CH3CN (17:8) 1000 $\mathrm{ml}+$ Tetra- n-heptyl ammonium bromide (2.45 g), detector 340 nm , adjust flow rate to elute Sennoside A at ca. 26 min	$\begin{aligned} & 0.32 \text { [1: 1-PrOH/ } \\ & \text { AcOEt/ H2O/AcOH } \\ & (40: 40: 30: 1), 2: \\ & \text { UV } 254 \mathrm{~nm}] \end{aligned}$			Reference Standard Prepared by Society of Japanese Pharmacopoeia $20 \mathrm{mg}, 32,800 \mathrm{JPY}$	TLC (identification), HPLC (Assay)	SENNAE FOLIUM, SENNAE FOLIUM PURVERATUM	

Sennoside B	98.79	$\begin{aligned} & 3412, \\ & 1712, \\ & 1637, \\ & 1074 \end{aligned}$	$\begin{aligned} & 354(164.8 \\ & \pm 0.9), 309 \\ & (167.8 \pm \\ & 0.9), 270 \\ & (231.0 \pm \\ & 1.3) \end{aligned}$	$\begin{array}{\|l\|} \hline 184.1 \pm \\ 1.3 \end{array}$	ODS column (I.D. 4.6 $\mathrm{mm} \times 15 \mathrm{~cm}$), column temp $50^{\circ} \mathrm{C}, \mathrm{pH} 5,1$ mol/I AcOH-AcONH4 Buffer (1in10)/ CH3CN (17:8) 1000 $\mathrm{ml}+$ Tetra- n-heptyl ammonium bromide (2.45 g), detector 340 nm , adjust flow rate to elute Sennoside B at ca. 15 min	$\begin{aligned} & 0.23[1: 1-\mathrm{PrOH} / \\ & \mathrm{AcOEt} / \mathrm{HzO} / \mathrm{AcOH} \\ & (40: 40: 30: 1), 2: \\ & \mathrm{UV} 254 \mathrm{~nm}] \end{aligned}$			Reference Standard Prepared by Society of Japanese Pharmacopoeia $20 \mathrm{mg}, 31,600 \mathrm{JPY}$	HPLC (Assay)	SENNAE FOLIUM, SENNAE FOLIUM PURVERATUM	
Berberine chloride	>99.5	$\begin{aligned} & 3400, \\ & 1600, \\ & 1250 \end{aligned}$	420 (155), 345 (724), 263 (796), 228 (820)		ODS column (I.D. $4.6 \mathrm{~mm} \times 150 \mathrm{~mm}$), Column temp $40^{\circ} \mathrm{C}$, detector 345 nm , flow rate $1.0 \mathrm{ml} / \mathrm{min}$	$\begin{aligned} & 0.32 \text { [1: 1-BuOH/ } \\ & \mathrm{H} 2 \mathrm{O} / \mathrm{AcOH} \\ & (7: 2: 1), 2: \mathrm{UV} 254 \\ & \mathrm{~nm}] \end{aligned}$			Reference Standard Prepared by Society of Japanese Pharmacopoeia $30 \mathrm{mg}, 32,400 \mathrm{JPY}$	TLC (identification), HPLC (Assay)	PHELLODENDRI CORTEX, PHELLODENDRI CORTEX PULVERATUS, COPTIDIS RHIZOMA, COPTIDIS RHIZOMA	Bull. Natl. Inst. Health Sci ., 119, 97-100 (2001)
Ginsenoside Rb1		$\begin{aligned} & 3390, \\ & 2932 \end{aligned}$	no specific absorbance	$\begin{array}{\|c\|} \hline 200.1 \pm \\ 0.3 \end{array}$	[JP15] ODS column (I.D. $4.6 \mathrm{~mm} \times 150$ mm), column temp $40^{\circ} \mathrm{C}, \mathrm{H}_{2} \mathrm{O} /$ acetonitrile (7:3), detector 203 nm , adjust flow rate Ginsenoside Rb1 at ca. 20 min	[JP15] [1:lower layer of $\mathrm{CHCl}_{3} /$ $\mathrm{MeOH} / \mathrm{H} 2 \mathrm{O}$ (13:7: 2), 2: dil. $\mathrm{H}_{2} \mathrm{SO}_{4}$, $110^{\circ} \mathrm{C}, 5 \mathrm{~min}$]	$0.49(1 \mathrm{H}, \mathrm{d}, J=11.0 \mathrm{~Hz}), 1.44$ $(1 \mathrm{H}, \mathrm{brd}, J=14.1 \mathrm{~Hz}), 3.73(1 \mathrm{H}$, $\mathrm{dt}, J=5.4,10.2 \mathrm{~Hz}), 2.30(1 \mathrm{H}, \mathrm{br}$ $\mathrm{dd}, J=10.6,19.3 \mathrm{~Hz}), 1.01(3 \mathrm{H}$, $\mathrm{s}), 0.93(3 \mathrm{H}, \mathrm{s}), 1.37(3 \mathrm{H}, \mathrm{s})$, $1.69(3 \mathrm{H}, \mathrm{s}), 1.63(3 \mathrm{H}, \mathrm{s}), 1.08$ $(3 \mathrm{H}, \mathrm{s}), 0.86(3 \mathrm{H}, \mathrm{s}), 0.93(3 \mathrm{H}$, $\mathrm{s}), 4.44(1 \mathrm{H}, \mathrm{br} d, J=7.5 \mathrm{~Hz})$, $4.68(1 \mathrm{H}, \mathrm{dd}, J=2.4,7.5 \mathrm{~Hz})$, $4.59(1 \mathrm{H}, \mathrm{brd}, J=7.9 \mathrm{~Hz}), 4.36$ $(1 \mathrm{H}, \mathrm{dd}, J=2.2,7.7 \mathrm{~Hz})$.	132.2 (C), 126.0 (CH), 105.4 (CH), 105.0 (CH), 104.5 (CH), 98.1 (CH), 91.4 (CH), 85.0 (C), 81.0 (CH), 78.5 (CH), $78.5(\mathrm{CH}), 78.4(\mathrm{CH}), 77.9(\mathrm{CH})$, 77.9 (CH), 77.9 (CH), 77.7 (CH), 76.8 (CH), 76.3 (CH), 75.1 (CH), 75.3 (CH), 71.9 (CH), 71.7 (CH), 71.6 (CH), 71.5 (CH), $71.9(\mathrm{CH}), 70.2\left(\mathrm{CH}_{2}\right), 63.1\left(\mathrm{CH}_{2}\right)$, $62.8\left(\mathrm{CH}_{2}\right), 62.8\left(\mathrm{CH}_{2}\right), 57.5(\mathrm{CH}), 52.9$ (CH), 52.4 (C), 51.1 (CH), 49.6 (CH), 41.0 (C), 40.6 (C), 40.3 (CH2), 37.9 (C), $36.8(\mathrm{CH} 2), 35.8(\mathrm{CH} 2), 31.5(\mathrm{CH} 2)$, $30.8(\mathrm{CH} 2), 28.4(\mathrm{CH} 3), 27.3\left(\mathrm{CH}_{2}\right)$, $27.2\left(\mathrm{CH}_{2}\right), 26.0\left(\mathrm{CH}_{3}\right), 23.9\left(\mathrm{CH}_{2}\right)$, $22.5\left(\mathrm{CH}_{3}\right), 19.2(\mathrm{CH} 2), 18.0(\mathrm{CH} 3)$, $17.4\left(\mathrm{CH}_{3}\right), 16.7\left(\mathrm{CH}_{3}\right), 16.7\left(\mathrm{CH}_{3}\right)$, 16.3 (CH3).	Reference Standard Prepared by Society of Japanese Pharmacopoeia $15 \mathrm{mg}, 53,000 \mathrm{JPY}$	TLC (identification), HPLC (Assay)	GINSENG RADIX, GINSENG RADIX PULVERATA, GINSENG RADIX RUBRA	IYAKUHIN KENKYU, 36 (5), $211-222$ (2005)
Ginsenoside Rg1		$\begin{aligned} & 3390, \\ & 2932 \end{aligned}$	no specific absorbance	$\begin{array}{\|c\|} \hline 194.7 \pm \\ 0.3 \end{array}$	[JP15] ODS column (I.D. $4.6 \mathrm{~mm} \times 150$ mm), column temp $30^{\circ} \mathrm{C}, \mathrm{H}_{2} \mathrm{O} /$ acetonitrile (4:1), detector 203 nm , adjust flow rate Ginsenoside Rg1 at ca. 25 min	[JP15] [1:lower layer of $\mathrm{CHCl}_{3} /$ $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ (13:7: 2), 2: dil. $\mathrm{H}_{2} \mathrm{SO}_{4}$, $110^{\circ} \mathrm{C}, 5 \mathrm{~min}$]	3.10 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=5.1,11.7 \mathrm{~Hz}$), $4.10(\mathrm{dt}, \mathrm{J}=3.3,10.6 \mathrm{~Hz}), 1.49$ ($1 \mathrm{H}, \mathrm{dd}, J=2.3,13.1 \mathrm{~Hz}$), 3.68 ($1 \mathrm{H}, \mathrm{dt}, J=5.3,10.4 \mathrm{~Hz}$), 229 ($1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=7.7,10.8 \mathrm{~Hz}$), 1.10 $(3 \mathrm{H}, \mathrm{s}), 1.00(3 \mathrm{H}, \mathrm{s}), 1.35(3 \mathrm{H}$, s), I. $69(3 \mathrm{H}, \mathrm{s}), 1.63(3 \mathrm{H}, \mathrm{s})$, $1.33(3 \mathrm{H}, \mathrm{s}), 1.01(3 \mathrm{H}, \mathrm{s}), 0.96$ $(3 \mathrm{H}, \mathrm{s}), 4.35(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.7 \mathrm{~Hz})$, $4.61(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.7 \mathrm{~Hz})$.	132.3 (C), 125.8 (CH), 105.6 (CH), 98.3 (CH), 84.9 (C), 80.9 (CH2), 79.1 (CH), 79.8 (CH), 78.2 (CH), 77.9 (CH), 77.7 (CH), 75.5 (CH), 75.4 (CH), 71.9 (CH), 71.7 (CH), 71.2 (CH), 62.9 (CH2), 62.5 (CH2), 61.8 (CH), 53. 1 (CH), 52.4 (C), 50.6 (CH), 49.4 (CH), 45.3 (CH2), 41.9 (C), 40.5 (C), 40.4 (C), 40.2 (CH2), 36.6 (CH 2), 31.5 (CH2), $31.4\left(\mathrm{CH}_{3}\right), 31.0$ (CH 2), $27.2\left(\mathrm{CH}_{2}\right), 27.6\left(\mathrm{CH}_{2}\right), 25.9$ (CH3), 24.2 (CH2), $22.8\left(\mathrm{CH}_{3}\right)$, 18.0 $\left(\mathrm{CH}_{3}\right), 17.8\left(\mathrm{CH}_{3}\right), 17.6\left(\mathrm{CH}_{3}\right), 17.1$ (CH3), 16.1 (CH3).	Reference Standard Prepared by Society of Japanese Pharmacopoeia $15 \mathrm{mg}, 65,000 \mathrm{JPY}$	TLC (identification), HPLC (Assay)	GINSENG RADIX, GINSENG RADIX PULVERATA, GINSENG RADIX RUBRA	IYAKUHIN KENKYU, 36 (5), 211-222 (2005)
Puerarin	99.1	$\begin{aligned} & 3364, \\ & 1634, \\ & 1515, \\ & 1060 \end{aligned}$	$\begin{aligned} & \hline 305.6 \\ & (243.5), \\ & 249.4 \\ & (732.4) \end{aligned}$	201.5		$\begin{aligned} & 0.42\left[1: \mathrm{CHCl}_{3} /\right. \\ & \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} \\ & (6: 4: 1), 2: \text { UV } 366 \\ & \mathrm{~nm}] \end{aligned}$	$\begin{aligned} & 4.80(1 \mathrm{H}, \mathrm{~d}, J=9 \mathrm{~Hz}), 6.80(2 \mathrm{H}, \\ & \mathrm{dd}, J=8.5,2.5 \mathrm{~Hz}), 6.98(1 \mathrm{H}, \mathrm{~d}, \\ & J=8.5 \mathrm{~Hz}), 7.39(2 \mathrm{H}, \mathrm{dd}, J=8.5, \\ & 2.5 \mathrm{~Hz}), 7.93(1 \mathrm{H}, \mathrm{~d}, J=9 \mathrm{~Hz}), \\ & 8.33(1 \mathrm{H}, \mathrm{~s}) . \end{aligned}$	61.4 (CH2), 70.4 (CH), 70.8 (CH), 73.4 (CH), 78.7 (CH), 81.7 (CH), 112.6 (CH), 114.9 (CH), 116.8 (C), 122.5 (C), 123.0 (C), 126.2 (CH), 130.0 (CH), 152.6 (CH), 156.1 (C), 157.1 (C), 161.0 (C), 174.9 (C).	Reference Standard Prepared by Society of Japanese Pharmacopoeia $20 \mathrm{mg}, 34,800 \mathrm{JPY}$	TLC (identification)	PUERARIAE RADIX	$\begin{aligned} & \text { IYAKUHIN } \\ & \text { KENKYU , 33 (2), } \\ & 118-123 \text { (2002) } \end{aligned}$

Table 8

List of Reference Sample in JP

List of Reference Sample in JP

Compound	Molecular Formula	CAS No.	HPLC (1: Column, 2: Detect, 3: Colomn Temp., 4: Mobile phase)	TLC condition (1: Dev. solv., 2: Detect)	Color tone on TLC	Application	Name of crude drug	Purchase Information	Japanese name of crude drug
Bergenin	C14H1609	477-90-7		$\begin{aligned} & \text { 1: AcOEt/EtOH }(95) / \mathrm{H}_{2} \mathrm{O} \\ & (100: 17: 13), 2: \mathrm{UV}(254 \mathrm{~nm}) \end{aligned}$	dark blue	TLC (Identification)	MALLOTI CORTEX	Bergenin Standard 20,000JPY/20mg (WAKO)	Akamegashiwa
Barbaloin	C21H22O9	1415-73-2	1: ODS column (I.D. $6 \mathrm{~mm} \times 15 \mathrm{~cm}$), 2: 360 nm, 3: $30^{\circ} \mathrm{C}, 4: \mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN} / \mathrm{AcOH}(100)$ (74:26:1) adjust flow rate to elute barbaloin at ca. 12 min	$\begin{aligned} & \text { 1: } \mathrm{AcOEt} / \mathrm{Ac}_{2} \mathrm{O} / \mathrm{H}_{2} \mathrm{O} / \mathrm{AcOH} \\ & (100)(20: 5: 2: 2), 2: \mathrm{UV}(365 \end{aligned}$ \|nm)	red	TLC (Identification) HPLC (Component determination)	ALOE aloe pulverata	Barbaloin Standard $8,500 \mathrm{JPY} / 10 \mathrm{mg}$ (WAKO)	Aroe
Arbutin	C12H1607	497-76-7	1: ODS column (1.D. $4-6 \mathrm{~mm} \times 15-25 \mathrm{~cm}$), 2: $280 \mathrm{~nm}, 3: 20^{\circ} \mathrm{C}, 4: \mathrm{H}_{2} \mathrm{O} / \mathrm{MeOH}$ $/ 0.1 \mathrm{~mol} / \mathrm{L} \mathrm{HCl}$ (94:5:1) adjust flow rate to elute arbutin at ca. 6 min	$\begin{aligned} & 1: \mathrm{HCOOEt} / \mathrm{H}_{2} \mathrm{O} / \mathrm{HCOOH}^{2} \\ & (8: 1: 1), 2: \text { dil. } \mathrm{H}_{2} \mathrm{SO}_{4}(1 \text { in } 2), \\ & 105^{\circ} \mathrm{C}, 10 \mathrm{~min} \end{aligned}$	Yellow-brown to blackish brown	TLC (Identification) HPLC (Component determination)	UVAE URSI FOLIUM	Arbutin Standard $9,000 \mathrm{JPY} / 20 \mathrm{mg}$	Urushi
Dehydrocorydaline nitrate	C22H24N2O6		1: ODS column (I.D. $4.6 \mathrm{~mm} \times 15 \mathrm{~cm}$), 2: $340 \mathrm{~nm}, 3: 40^{\circ} \mathrm{C}$, 4: dissolve $\mathrm{NaHPO}_{4} 12 \mathrm{H}_{2} \mathrm{O}$ (17.91g) in $\mathrm{H}_{2} \mathrm{O}(970 \mathrm{ml})$ and adjust to pH 2.2 with $\mathrm{H}_{3} \mathrm{PO}_{4}$. Then, add $\mathrm{NaClO}_{4} \mathrm{H}_{2} \mathrm{O}$ $(14.05 \mathrm{~g})$ to this solution and add $\mathrm{H}_{2} \mathrm{O}$ to make exactly 1000 ml . To this solution, add $\mathrm{CH}_{3} \mathrm{CN}(450 \mathrm{ml})$, then add sodium laurylsulfate (0.2 g) adjust flow rate to elute dehydrocorydaline at ca. 24 min			HPLC (Component determination)	CORYDALIS TUBER	Dehydrocorydaline Nitrate Standard $19,800 \mathrm{JPY} / 10 \mathrm{mg}$	Engosaku
Parahydroxybenzoic acid	C7H6O3	99-96-7		$\begin{aligned} & \text { 1: AcOEt/EtOH }(99.5) / \mathrm{H}_{2} \mathrm{O} \\ & (20: 2: 1), 2: \mathrm{UV}(254 \mathrm{~nm}) \end{aligned}$	dark purple	TLC (Identification)	CATALPAE FRUCTUS		Kisasage
Amygdalin	C20H27NO11	29883-15-6		1: AcOEt/MeOH/H $\mathrm{H}_{2} \mathrm{O}$ (7:3:1), 2: dil. $\mathrm{H}_{2} \mathrm{SO}_{4}, 105^{\circ} \mathrm{C}, 10 \mathrm{~min}$	brown to dark green	TLC (Identification)	ARMENIACAE SEMEN	Amygdalin (90+\%) 1,500 JPY/1 g (TOKYO KASEI)	Kyonin
Gentiopicroside	C16H2009	20831-76-9		$\begin{aligned} & \text { 1: AcOEt/EtOH }(99.5) / \mathrm{H}_{2} \mathrm{O} \\ & (8: 2: 1), 2: \text { UV }(254 \mathrm{~nm}) \end{aligned}$	dark purple	TLC (Identification)	GENTIANAE RADIX GENTIANAE RADIX PULVERATA GENTIANAE SCABRAE RADIX GENTIANAE SCABRAE RADIX PULVERATA	Gentiopicroside Standard $15,000 \mathrm{JPY} / 10 \mathrm{mg}$ (WAKO)	Genchiana, Ryutan
Ginsenoside Rg1	C42H72014	22427-39-0		1: Lower layer of CHCl_{3} / $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ (13:7:2), 2: dil. $\mathrm{H}_{2} \mathrm{SO}_{4}, 110^{\circ} \mathrm{C}, 5 \mathrm{~min}$	red-purple	TLC (Identification)	GINSENG RADIX RUBRA GINSENG RADIX GINSENG RADIX PULVERATA	Ginsenoside-Rg1 Standard 19,000 JPY/10 mg (WAKO)	Kojin, Ninjin
Magnolol	C18H1802	528-43-8	1: ODS column (1.D. $4-6 \mathrm{~mm} \times 15-25 \mathrm{~cm}$), 2: $340 \mathrm{~nm}, 3: 20^{\circ} \mathrm{C}, 4: \mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN} / \mathrm{AcOH}$ (100) (50:50:1) adjust flow rate to elute magnolol at ca. 14 min			HPLC (Component determination)	MAGNOLIAE CORTEX MAGNOLIAE CORTEX PULVERATUS	Magnolol Standard $8,800 \mathrm{JPY} / 20 \mathrm{mg}$ (WAKO)	Koboku
Schizandrin	C24H3207	7432-28-2		$\begin{aligned} & \text { 1: AcOEt/hexane/AcOH } \\ & (100)(10: 10: 1), \text { UV }(254 \\ & \mathrm{nm}) \end{aligned}$	blue-violet	HPLC (Identification)	SCHISANDRAE FRUCTUS	Schizandrin Standard $15,700 \mathrm{JPY} / 20 \mathrm{mg}$ (WAKO)	Gomishi
Saikosaponin a	C42H68O13	20736-09-8		$\begin{aligned} & 1: \mathrm{CHCl}_{3} / \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} \\ & (30: 10: 1), 2: \mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{EtOH} \\ & (95)(1: 1) 50^{\circ} \mathrm{C}, 5 \mathrm{~min} \end{aligned}$	blue to bluepurple	TLC (Identification)	BUPLEURI RADIX	Saikosaponin a Standard $19,600 \mathrm{JPY} / 12 \mathrm{mg}$ (WAKO)	Saiko

Geniposide	C17H24O10	24512-63-8	1: ODS column (I.D. $6 \mathrm{~mm} \times 15 \mathrm{~cm}$), 2: 240nm, 3: $30^{\circ} \mathrm{C}, 4: \mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}(22: 3)$ adjust flow rate to elute geniposide at ca. 15 min	1: AcOEt/MeOH (3:1), 2: 4methoxybenzaldehyde $-\mathrm{H}_{2} \mathrm{SO}_{4}$ TS, $105^{\circ} \mathrm{C}, 10 \mathrm{~min}$	dark purple	TLC (Identification) HPLC (Component determination)	GARDENIAE FRUCTUS GARDENIAE FRUCTUS PULVERATUS	Geniposide Standard 7,000 JPY/20 mg (WAKO)	Sanshin
Loganin	C17H26010	18524-94-2		1: AcOEt $/ \mathrm{H}_{2} \mathrm{O} / \mathrm{HCOOH}$ (6:1:1), 2: 4-methoxybenzaldehyde $-\mathrm{H}_{2} \mathrm{SO}_{4} \mathrm{TS}$, $90^{\circ} \mathrm{C}, 3 \mathrm{~min}$	red-purple	TLC (Identification)	CORNI FRUCTUS	Loganin Standard $31,500 \mathrm{JPY} / 20 \mathrm{mg}$ (WAKO)	Sanshuyu
[6]-Gingerol	C17H2604	23513-14-6		1: hexane/acetone/AcOH (100) (10:7:1), 2:2,4dinitrophenylhydrazine TS, $105^{\circ} \mathrm{C}, 10 \mathrm{~min}$	brown	TLC (Identification)	ZINGIBERIS RHIZOMA ZINGIBERIS RHIZOMA PULVERATUM	[6]-Gingerol Standard $13,000 \mathrm{JPY} / 20 \mathrm{mg}$ (WAKO)	Shokyo
Bufalin, Cinobufagin, Resibufogenin	C24H34O4 (Bufalin), (Cinobufagin), C24H32O4 (Resibufogenin)	$465-21-4$ (Bufalin), $470-37-1$ (Cinobufagin), $465-39-4$ (Resibufogenin)	1: ODS column (I.D. 4-6 mm x 15-30 cm), 2: $300 \mathrm{~nm}, 3: 40^{\circ} \mathrm{C}$, 4: dil. $\mathrm{H}_{3} \mathrm{PO}_{4}$ (1 in 1000) $/ \mathrm{CH}_{3} \mathrm{CN}(11: 9)$ adjust flow rate to elute Int.Std. (Int. Std.= indometacin in MeOH (1 in 4000) r.t. 16-19 min.)	Resibufogenin $1:$ cyclohexane/acetone (3:2), 2: dil. $\mathrm{H}_{2} \mathrm{SO}_{4}, 105^{\circ} \mathrm{C}, 5 \mathrm{~min}$	blue-green	HPLC (Component determination) TLC (Identification)	BUFONIS VENENUM	Bufalin Standard 24,000 JPY/20 mg (WAKO), Cinobufagin Standard $18,500 \mathrm{JPY} / 20 \mathrm{mg}$ (WAKO), Resibufogenin Standard $19,600 \mathrm{JPY} / 20 \mathrm{mg}$ (WAKO)	Senso
Chikusetsusaponin IV	C47H74018			$\begin{aligned} & \text { 1: } \mathrm{AcOEt} / \mathrm{H}_{2} \mathrm{O} / \mathrm{HCOOH} \\ & (5: 1: 1), 2: \text { dil. } \mathrm{H}_{2} \mathrm{SO}_{4}, 110^{\circ} \mathrm{C}, \\ & 5 \text { in } \end{aligned}$	purple-red	TLC (Identification)	PANACIS JAPONICI RHIZOMA	Chikusetsusaponin IV Standard $24,000 \mathrm{JPY} / 20 \mathrm{mg}$ (KISHIDA)	Chikusetsuninjin
Capsaicin	C18H27NO3	404-86-4	1: phenylated silica gel (I.D. $4.6 \mathrm{~mm} \times 25$ cm), 2: $281 \mathrm{~nm}, 3: 30^{\circ} \mathrm{C}$, 4: dil. $\mathrm{H}_{3} \mathrm{PO}_{4}$ (1 in $1000) / \mathrm{CH}_{3} \mathrm{CN}$ (3:2) adjust flow rate to elute capsaicin at ca. 20 min	1: $\mathrm{Et}_{2} \mathrm{O} / \mathrm{MeOH}$ (19:1), 2: 2, 6-dibromo- N-chloro-1,4benzoquinone monoimine TS , stand in NH_{3} gas	blue	TLC (Identification) HPLC (Component determination)	CAPSICI FRUCTUS CAPSICI FRUCTUS PULVERATUM	Capsaicin Standard 25,000 JPY/20 mg (WAKO)	Togarashi
Naringin	C27H32O14	10236-47-2		1: AcOEt/EtOH(99.5)/ $\mathrm{H}_{2} \mathrm{O}$ (8:2:1), 2: 2,6-dibromo-N -chloro-1,4-benzo-quinone monoimine TS, stand in NH_{3} gas	grayish green	TLC (Identification)	AURANTII PERICARPIUM	Naringin Standard $18,900 \mathrm{JPY} / 20 \mathrm{mg}$ (WAKO)	Tohi
Emetine hydrochloride	C29H4ON2O4	483-18-1	1: ODS column (I.D. 4-6 mm x 10-25 cm), 2: $283 \mathrm{~nm}, 3: 50^{\circ} \mathrm{C}, 4$: dissolve sodium 1heptane sulfonate $(2.0 \mathrm{~g})$ in $\mathrm{H}_{2} \mathrm{O}(500 \mathrm{ml})$, adjust pH 4.0 with AcOH (100) then add $\mathrm{MeOH}(500 \mathrm{ml})$ adjust flow rate to elute emetine at ca. 14 min			HPLC (Component determination)	IPECACUANHAE RADIX IPECACUANHAE RADIX PULVERATA	**JPY/30 Omg (WAKO, U. S. P. Reference Standards)	Tokon
Arecoline hydrobromide	C8H13NO2	63-75-2		$\begin{aligned} & \text { 1: Acetone/ } \mathrm{H}_{2} \mathrm{O} / \mathrm{AcOH}(100) \\ & \text { (10:6:1), 2: Iodine TS } \\ & \hline \end{aligned}$	red-brown	TLC (Identification)	ARECAE SEMEN		Binroji
Atropine sulfate	C34H48N2O10S	55-48-1	1: ODS column (I.D. $4 \mathrm{~mm} \times 15 \mathrm{~cm}$), 2: 210 $\mathrm{nm}, 3: 20^{\circ} \mathrm{C}$, 4: dissolve $\mathrm{KH}_{2} \mathrm{PO}_{4}(6.8 \mathrm{~g})$ in $\mathrm{H}_{2} \mathrm{O}$ (900 ml) and add $\mathrm{Et}_{3} \mathrm{~N}(10 \mathrm{ml})$ ajust to pH 3.5 with $\mathrm{H}_{3} \mathrm{PO}_{4}$. Then, add $\mathrm{H}_{2} \mathrm{O}$ to make exactly 1000 ml . Mix this sol. With $\mathrm{CH}_{3} \mathrm{CN}$ (9:1). adjust flow rate to elute atropine at ca. 14 min (assay for BELLADONNAE RADIX), adjust flow rate to elute scopolamine at ca. 8 min (assay for SCOPOLIAE RHIZOMA)	1: Acetone $/ \mathrm{H}_{2} \mathrm{O} / \mathrm{NH}_{3}$ aq (28) (90:7:3), 2: $80^{\circ} \mathrm{C}, 10 \mathrm{~min}$, after cooling Dragendorff's TS	yellow-red	TLC (Identification) HPLC (Assay)	BELLADONNAE RADIX SCOPOLIAE RHIZOMA	Atropine Sulfate Standard 5,200 JPY/20 mg (WAKO)	Beradonnakon, Rotokon

Paeonol	C9H1003	552-41-0	1: ODS column (I.D. 4-6 mm x 15-25 cm), 2: $274 \mathrm{~nm}, 3: 20^{\circ} \mathrm{C}, 4: \mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN} / \mathrm{AcOH}$ (100) (65:35:2), adjust flow rate to elute paeonol at ca. 14 min	$\begin{aligned} & \text { 1: AcOEt/hexane (1:1), 2: UV } \\ & (254 \mathrm{~nm}) \end{aligned}$	no data in JP	TLC (Identification) HPLC (Component determination)	MOUTAN CORTEX moutan cortex pULVERATUS	Paeonol Standard $9,000 \mathrm{JPY} / 10 \mathrm{mg}$ (WAKO)	Botanpi
Strychnine nitrate	C21H23N3O5	66-32-0	1: ODS column (1.D. $4 \mathrm{~mm} \times 15 \mathrm{~cm}$), 2: 210 $\mathrm{nm}, 3: 20^{\circ} \mathrm{C}, 4: \mathrm{KH}_{2} \mathrm{PO}_{4}(6.8 \mathrm{~g})$ in $\mathrm{H}_{2} \mathrm{O}(1000$ $\mathrm{ml}) / \mathrm{CH}_{3} \mathrm{CN} / \mathrm{Et}_{3} \mathrm{~N}(45: 5: 1)$, ajust to pH 3.0 with $\mathrm{H}_{3} \mathrm{PO}_{4}$. adjust flow rate to elute strychnine at ca. 17 min			HPLC (Assay)	STRYCHNI SEMEN		Homika
Kainic acid	C10H15NO4	487-79-6		$\begin{aligned} & 1: \mathrm{H}_{2} \mathrm{O} / 1-\mathrm{BuOH} / \mathrm{AcOH}(100) \\ & (5: 4: 1), 2: 90^{\circ} \mathrm{C}, 10 \mathrm{~min} \end{aligned}$	light yellow	TLC (Identification)	DIGENEA	$\begin{aligned} & \text { Kainic acid } \\ & 27,000 \text { JPY/10 mg } \\ & \text { (FUNAKOSHI) } \end{aligned}$	Makuri
Scopolamine hydrobromide	C17H22BrNO4	114-49-8	see Atropine sulfate			HPLC (Assay)	SCOPOLIAE RHIZOMA	Scopolamine Hydrobromide n Hydrate $5,200 \mathrm{JPY} / 20 \mathrm{mg}$ (WAKO)	Rotokon

List of Reference Sample in 1st Supplementary of JP14

Compound	Molecular Formula	CAS NO.	$\begin{gathered} \text { HPLC } \\ \text { (1: Column, 2: Detect, } \\ \text { 3: Colomn Temp., 4: Mobile phase) } \end{gathered}$	TLC condition (1: Dev. solv., 2: Detect)	Color tone on TLC	Application	Name of crude drug	Purchase Information	Japanese name of crude drug
Luteolin	C15H1006	491-70-3		1: AcOEt/2-butanone/ $\mathrm{H}_{2} \mathrm{O} / \mathrm{HCOOH}$ (25:3:1:1), 2: FeCl_{3}-MeOH TS	dark green	TLC (Identification)	CHRYSANTHEMI FLOS	$\begin{aligned} & \hline \text { Luteolin } \\ & 6,000 \mathrm{JPY} / 25 \mathrm{mg} \end{aligned}$	Kikuka
Aristolochic acid I	C17H11NO7	313-67-7	1: ODS column (1.D. $4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$), 2: $400 \mathrm{~nm}, 3: 40^{\circ} \mathrm{C}, 4$: $\mathrm{Add} \mathrm{NaH}_{2} \mathrm{PO}_{4} 2 \mathrm{H}_{2} \mathrm{O}$ $(7.8 \mathrm{~g})$ and $\mathrm{H}_{3} \mathrm{PO}_{4}(2 \mathrm{ml})$ in $\mathrm{H}_{2} \mathrm{O}(1000 \mathrm{ml})$, mix this solution with $\mathrm{CH}_{3} \mathrm{CN}$ (11:9) adjust flow rate to elute aristolochic acid I at ca. 15 min			HPLC (Puruty)	ASIASARI RADIX	Aristolochic acid A $43,300 \mathrm{JPY} / 5 \mathrm{mg}$ (WAKO) Aristolochic Acid A $12,000 \mathrm{JPY} / 1 \mathrm{mg}$ (FUNAKOSHI)	Saishin
Rhynchophylline	C22H28N2O4	76-66-4	1: ODS column (I.D. $4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$), 2: $245 \mathrm{~nm}, 3: 40^{\circ} \mathrm{C}$, 4: dissolve $\mathrm{AcONH}_{4}(3.85$ g) in $\mathrm{H}_{2} \mathrm{O}(200 \mathrm{ml})$ and add $\mathrm{AcOH}(100) 10$ ml into this solution, then add $\mathrm{H}_{2} \mathrm{O}$ to make exactly 1000 ml . Add $\mathrm{CH}_{3} \mathrm{CN}(350 \mathrm{ml})$ into this solution. adjust flow rate to elute rhynchophylline at ca. 15 min			HPLC (Component determination)	UNCARIAE UNCIS CUM RAMULUS	Rhynchophylline Standard $22,000 \mathrm{JPY} / 10 \mathrm{mg}$ (KISHIDA)	Chotoko
Hirsutine	C22H28N2O3		1: ODS column (I.D. $4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$), 2: $245 \mathrm{~nm}, 3: 40^{\circ} \mathrm{C}$, 4: dissolve $\mathrm{AcONH}_{4}(3.85$ g) in $\mathrm{H}_{2} \mathrm{O}(200 \mathrm{ml})$ and add $\mathrm{AcOH}(100) 10$ ml into this solution, then add $\mathrm{H}_{2} \mathrm{O}$ to make exactly 1000 ml . Add $\mathrm{CH}_{3} \mathrm{CN}(350 \mathrm{ml})$ into this solution. adjust flow rate to elute rhynchophylline at ca. 15 min			HPLC (Component determination)	UNCARIAE UNCIS CUM RAMULUS	Hirsutine Standard $35,000 \mathrm{JPY} / 5 \mathrm{mg}$ (WAKO)	Chotoko

List of Reference Sample in JP15

Compound	Molecular Formula	CAS NO.	HPLC (1: Column, 2: Detect, 3: Colomn Temp., 4: Mobile phase)	TLC condition (1: Dev. solv., 2: Detect)	Color tone on TLC	Application	Name of crude drug	Purchase Information	Japanese name of crude drug
Icariin	C33H40015	489-32-7		$\begin{aligned} & \text { 1: AcOEt/EtOH (99.5)/H2O } \\ & (8: 2: 1), 2: \text { UV }(254 \mathrm{~nm}) \end{aligned}$	dark purple	TLC (Identification)	EPIMEDII HERBA	$\begin{aligned} & \text { Icariin } \\ & 25,000 \mathrm{JPY} / 20 \mathrm{mg} \text { (WAKO) } \end{aligned}$	In-yo-kaku
Benzoylmesaconine hydrochloride	C31H43NO10	86500-43-8		$\begin{aligned} & \text { 1: AcOEt/EtOH (99.5)/ NH } 3 \text { aq } \\ & \text { (28) (40:3:2), 2: } \\ & \text { dragendorff's TS + sodium } \\ & \text { nitrite TS } \end{aligned}$	yellow-brown	TLC (Identification)	PROCESSI ACONITI RADIX, PROCESSI ACONITI RADIX PULVERATA	BenzoyImesaconine Hydrochloride 15,000 JPY/5 mg (WAKO)	Bushi, Bushi-matsu
Osthole	C15H16O3	484-12-8		$\begin{aligned} & \text { 1: n-hexane/AcOEt (2:1), 2: } \\ & \text { UV (365 nm) } \end{aligned}$	blue-white fluorescent	TLC (Identification)	CNIDII MONNIERIS FRUCTUS	Osthole 20,000 JPY/20 mg (WAKO)	Jya-syou-shi
Chlorogenic acid	C16H1809	327-97-9		$\begin{aligned} & \text { 1: AcOEt/H2O/HCOOH } \\ & (6: 1: 1), 2: \text { UV }(365 \mathrm{~nm}) \end{aligned}$	blue-white fluorescent	TLC (Identification)	LONICERAE FOLIUM CUM CAULIS	Chlorogenic Acid 54,600 JPY/ 50 mg (WAKO)	Nin-dou
Aconitine	C34H47NO11	302-27-2	1: ODS column (I.D. $4.6 \mathrm{~mm} \times 15 \mathrm{~cm}$), 2: 231 nm (aconotine, hypaconitine, mesaconitine), 254 nm (jesaconitine), 3: $40^{\circ} \mathrm{C}, 4$: phosphate buffer solution for aconite root/tetrahydrofuran (183:17), adjust flow rate to elute mesaconitine at ca. 31 min			HPLC (Puruty)	PROCESSI ACONITI RADIX, PROCESSI ACONITI RADIX PULVERATA	Aconitine Standard $39,500 \mathrm{JPY} / 50 \mathrm{mg}$ (WAKO)	Bushi, Bushi-matsu
Jesaconitine	C35H49NO12	16298-90-1	1: ODS column (I.D. $4.6 \mathrm{~mm} \times 15 \mathrm{~cm}$), 2: 231 nm (aconotine, hypaconitine, mesaconitine), 254 nm (jesaconitine), 3: $40^{\circ} \mathrm{C}, 4$: phosphate buffer solution for aconite root/tetrahydrofuran (183:17), adjust flow rate to elute mesaconitine at ca. 31 min			HPLC (Puruty)	PROCESSI ACONITI RADIX, PROCESSI ACONITI RADIX PULVERATA		Bushi, Bushi-matsu
Hypaconitine	C33H45NO10	6900-87-4	1: ODS column (I.D. $4.6 \mathrm{~mm} \times 15 \mathrm{~cm}$), 2: 231 nm (aconotine, hypaconitine, mesaconitine), 254 nm (jesaconitine), 3: $40^{\circ} \mathrm{C}$, 4: phosphate buffer solution for aconite root/tetrahydrofuran (183:17), adjust flow rate to elute mesaconitine at ca. 31 min			HPLC (Puruty)	PROCESSI ACONITI RADIX, PROCESSI ACONITI RADIX PULVERATA	Hypaconitine 48,000 JPY/20mg (WAKO)	Bushi, Bushi-matsu
Mesaconitine	C33H45NO11	2752-64-9	1: ODS column (I.D. $4.6 \mathrm{~mm} \times 15 \mathrm{~cm}$), 2: 231 nm (aconotine, hypaconitine, mesaconitine), 254 nm (jesaconitine), 3: $40^{\circ} \mathrm{C}, 4$: phosphate buffer solution for aconite root/tetrahydrofuran (183:17), adjust flow rate to elute mesaconitine at ca. 31 min			HPLC (Puruty)	PROCESSI ACONITI RADIX, PROCESSI ACONITI RADIX PULVERATA	Mesaconitine 48,000 JPY/20mg	Bushi, Bushi-matsu

Table 9

List of CRS in Korean Pharmacopoeia

List of CRS in Korean Pharmacopoeia (KP)

Compound	Purity (\%)	$\mathrm{IR}\left(\mathrm{cm}^{-1}\right)$	UV $\lambda \max$ nm (E1\% 1 cm)	mp	HPLC	TLC R_{f} value (1:Dev. solv., 2:Detect)	${ }^{1} \mathrm{H}$-NMR	${ }^{13} \mathrm{C}$-NMR	Available from	Reference Standard for	Applied to	References
Baicalin	>95	$\begin{aligned} & 3385,1728, \\ & 1662,1611, \\ & 1575 \end{aligned}$	277.2	210.4	ZORBX Eclipse XDB-C8 (150 X $4.6 \mathrm{~mm}), 275$ $\mathrm{~nm}, 1 \%$ Acetic acid : MeOH: AcCN (60:30:10)	$0.17\left[1: \mathrm{CHCl}_{3} /\right.$ $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ $(10: 5: 1), 2: \mathrm{p-}$ anisaldehyde- $\mathrm{H}_{2} \mathrm{SO}_{4}, 105^{\circ} \mathrm{C}, 5$ min $]$	$\begin{aligned} & \text { 5.08 (1H, d, J = 7.1 Hz, H- } \\ & 1 '), 6.99(1 \mathrm{H}, \mathrm{~s}, \mathrm{H}-3), 7.04 \\ & (1 \mathrm{H}, \mathrm{~s}, \mathrm{H}-8), 7.63(3 \mathrm{H}, \mathrm{~m}, \\ & \left.\mathrm{H}-3^{\prime}, 4^{\prime}, 5^{\prime}\right), 8.07(2 \mathrm{H}, \mathrm{~m}, \\ & \left.\mathrm{H}-\mathrm{2}^{\prime}, 6^{\prime}\right), 12.5(1 \mathrm{H}, \mathrm{br} \mathrm{~s},- \\ & \mathrm{OH}) \end{aligned}$	71.6 (C-4"), 73.0 (C-2"), 75.4 (C-5"), 75.7 (C-3"), 94.3 (C-8), 100.4 (C-1"), 105.1 (C-3), 106.6 (C-10), 126.8 (C-2'), 126.8 (C-6'), 129.7 (C-3'), 129.7 (C-5'), 130.8 (C-1'), 131.1 (C-6), 132.7 (C-4'), 146.9 (C-5), 149.8 (C-9), 151.5 (C-7), 164.4 (C-2), 170.3 (C-6"), 182.9 (C-4)	Reference Standard Prepared by KFDA	TLC (identification), HPLC (component determination)	SCUTELLARIAE RADIX, SCUTELLARIAE RADIX pulverata	J. Chinese Chem. Sci ., 47, 247-251 (2000)
Paeoniflorin	>95	$\begin{aligned} & 3414,1713, \\ & 1280,1076 \end{aligned}$	231.6		$\begin{aligned} & \text { YMC pack ODS-A } \\ & \mathrm{C} 18(10 \mathrm{~mm} x \\ & 250 \mathrm{~mm}), 220 \\ & \mathrm{~nm}, \mathrm{AcCN} / \mathrm{H}_{2} \mathrm{O} \\ & (3: 7) \end{aligned}$	$\begin{aligned} & 0.4\left[1: \mathrm{CHCl}_{3} /\right. \\ & \mathrm{MeOH}(5: 1), 2: \\ & \mathrm{p} \text {-anisaldehyde- } \\ & \mathrm{H}_{2} \mathrm{SO}_{4}, 105^{\circ} \mathrm{C}, 5 \\ & \mathrm{~min}] \end{aligned}$	1.43 (3H, s, H-10), 1.90 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.4 \mathrm{~Hz}, \mathrm{H}-3$), $2.04(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.0 \mathrm{~Hz}$, $\mathrm{H}-6), 2.28(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.4$ $\mathrm{Hz}, \mathrm{H}-3), 2.59(1 \mathrm{H}, \mathrm{dd}, J=$ $11.0,6.8 \mathrm{~Hz}, \mathrm{H}-6), 2.66$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{H}-5$), $4.60(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}, \mathrm{H}-$ 1'), 4.81 (2H, s, H-8), 5.49 (1H, s, H-9) 7.57 (2H, t, $J=7.3 \mathrm{~Hz}, \mathrm{H}-3^{\prime \prime}, 5$ " $^{\prime \prime}$), 7.70 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{H}-4 \mathrm{~Hz}$), 8.13 (2H, d, J = $8.5 \mathrm{~Hz}, \mathrm{H}-$ 2", 6")		Reference Standard Prepared by KFDA	TLC (identification), HPLC (component determination)	Paeoniae Radix	IYAKUHIN KENKYU , 29 (10), 725-729 (1998)
Berberine chloride	>95	$\begin{aligned} & 3400,1600, \\ & 1250 \end{aligned}$	$\begin{array}{\|l\|} \hline 420,345 \\ 263,228 \end{array}$		TSK-gel ODS80Ts (4.6 mm x 150 mm), Column temp $40^{\circ} \mathrm{C}, 345 \mathrm{~nm}$	$\begin{aligned} & 0.5\left[1: \mathrm{CHCl}_{3} /\right. \\ & \text { MeOH (5:1), 2: } \\ & \mathrm{p} \text {-anisaldehyde- } \\ & \mathrm{H}_{2} \mathrm{SO}_{4}, 105^{\circ} \mathrm{C}, 5 \\ & \text { min] } \end{aligned}$	$\begin{aligned} & 3.24(\mathrm{H}-5), 4.07(10- \\ & \mathrm{OMe}), 4.19\left(9-\mathrm{OMe}^{2}\right), 4.88 \\ & (\mathrm{H}-6), 6.07\left(-\mathrm{OCH}_{2} \mathrm{O}-\right), \\ & 6.83(\mathrm{H}-4), 7.39(\mathrm{H}-1), \\ & 7.88(\mathrm{H}-12), 7.90(\mathrm{H}-11), \\ & 8.34(\mathrm{H}-13), 9.54(\mathrm{H}-8) \end{aligned}$	$\begin{aligned} & \text { 27.2 (C-5), } 56.3(\mathrm{C}-6), \\ & 56.7(10-\mathrm{OMe}), 61.9(9- \\ & \text { OMe), } 102.3\left(-0 C \mathrm{C}_{2} \mathrm{O}-\right), \\ & 105.1(\mathrm{C}-1), 108.5(\mathrm{C}-4), \\ & 119.8(\mathrm{C}-\mathrm{a}), 120.2(\mathrm{C}- \\ & 13), 121.8(\mathrm{C}-8 \mathrm{a}), 123.1 \\ & (\mathrm{C}-12), 126.9(\mathrm{C}-11), \\ & 129.8(\mathrm{C}-4 \mathrm{a}), 133.5(\mathrm{C}- \\ & 12 \mathrm{a}), 138.2(\mathrm{C}-13 \mathrm{a}), \\ & 144.1(\mathrm{C}-8), 144.1(\mathrm{C}-9), \\ & 148.6(\mathrm{C}-2), 150.5(\mathrm{C}-10), \\ & 151(\mathrm{C}-3) \end{aligned}$	Reference Standard Prepared by KFDA	TLC (identification), HPLC (Assay)	PHELLODENDRI Bark, COPTIDIS RHIZOMA	Bull. Natl. Inst. Health Sc ., 119 , 97-100 (2001); Phytochemistry , 28, 2833-2839 (1989)

Loganin	>95	$\begin{aligned} & 3431,1711, \\ & 1074 \end{aligned}$	237	$\begin{aligned} & 220- \\ & 222 \end{aligned}$	YMC pack ODS-A C18 (10 mm x 250 mm), 254 $n m, \mathrm{AcCN} / \mathrm{H}_{2} \mathrm{O}$ (3:7)	$\begin{aligned} & 0.17\left[1: \mathrm{CHCl}_{3} /\right. \\ & \mathrm{MeOH}(5: 1), 2: \\ & \mathrm{p} \text {-anisaldehyde- } \\ & \mathrm{H}_{2} \mathrm{SO}_{4}, 105^{\circ} \mathrm{C}, \\ & 5 \mathrm{~min}] \end{aligned}$	$1.07(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{H}-$ 10), 1.62 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6 \mathrm{a}$), 1.87 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8$), 2.03 (1H, m, H-6b), 2.23 (1H, m, H-9), 3.09 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5$), 3.17-3.39 (4H, m, H-2', 3', 4', 5'), 3.66 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=$ $11.8,6.0 \mathrm{~Hz}, \mathrm{H}-6$ 'a), 3.89 (1H, dd, J = 11.8, 5.2 Hz , H-6'b), 4.04 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J}=4.4$ $\mathrm{Hz}, \mathrm{H}-7), 4.64(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $8.0 \mathrm{~Hz}, \mathrm{H}-1$ '), 5.26 (1H, d, $J=4.4 \mathrm{~Hz}, \mathrm{H}-1), 7.38(1 \mathrm{H}$, s, H-3)	$\begin{aligned} & 13.4(\mathrm{C}-10), 32.2(\mathrm{C}-5), \\ & 42.2 \text { (C-8), } 42.6 \text { (C-6), } \\ & 46.6 \text { (C-9), } 62.1(\mathrm{C}-6 '), \\ & 71.6 \text { (C-4'), } 74.7(\mathrm{C}-7), \\ & 75.1 \text { (C-2'), } 78.0(\mathrm{C}-5 '), \\ & 78.3 \text { (C-3'), } 97.7(\mathrm{C}-1), \\ & 99.9(\mathrm{C}-1 '), 114.1(\mathrm{C}-4), \\ & 152.1(\mathrm{C}-3), 169.6(\mathrm{C}-11) \end{aligned}$	Reference Standard Prepared by KFDA	TLC (identification), HPLC (component determination)	CORNI FRUCTUS	Fitoterapia 71, 420-424 (2000)
Hesperidin	>95	$\begin{aligned} & 3432,1646, \\ & 1096 \end{aligned}$	$\begin{aligned} & 336,284, \\ & 204 \end{aligned}$	$\begin{aligned} & 272- \\ & 274 \end{aligned}$	YMC pack ODS-A C18 (10 mm x 250 mm), 280 $n m, \mathrm{AcCN} / \mathrm{H}_{2} \mathrm{O}$ (2:8)	$\begin{aligned} & 0.45\left[1: \mathrm{CHCl}_{3} /\right. \\ & \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} \\ & (10: 5: 1), 2: \mathrm{p-} \\ & \text { anisaldehyde- } \\ & \mathrm{H}_{2} \mathrm{SO}_{4}, 105^{\circ} \mathrm{C}, 5 \\ & \text { min] } \end{aligned}$	$1.09(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6 \mathrm{~Hz}, \mathrm{H}-$ 6"'), 3.77 (3H, s, -OMe), 4.52 (1H, brs, H-1"'), 5.51 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=9,3 \mathrm{~Hz}, \mathrm{H}-2$), $5.51(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9 \mathrm{~Hz}, \mathrm{H}-$ $\left.1^{\prime \prime}\right), 6.13$ (2H, brs, H-6, 8), 6.92 (3H, brs, H-2', 5', 6'), 11.86 (1 H , brs, -OH)		Reference Standard Prepared by KFDA	TLC (identification), HPLC (component determination)	AURANTII NOBILIS PERICARPIURN	Phytochemistry, 37, 1463-1466 (1994)
Puerarin	>95	3428, 1630, 1515,1445, 1396,1257, 1057,889, 835,631	249, 301	187	$\begin{aligned} & \text { Curosil PFP (250 } \\ & \text { X } 4.6 \mathrm{~mm}), 254 \\ & \mathrm{~nm}, \mathrm{AcCN}: \mathrm{H}_{2} \mathrm{O} \\ & (15: 85) \end{aligned}$	$\begin{aligned} & 0.50\left[1: \mathrm{CHCl}_{3} /\right. \\ & \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} \\ & (6: 4: 1), 2: \mathrm{UV} \\ & (254 \mathrm{~nm}), \mathrm{p}- \\ & \text { anisaldehyde- } \\ & \mathrm{H}_{2} \mathrm{SO}_{4}, 105^{\circ} \mathrm{C}, \\ & 10 \mathrm{~min}] \end{aligned}$	$\begin{aligned} & 4.81(1 \mathrm{H}), 6.80(2 \mathrm{H}), 6.99 \\ & (1 \mathrm{H}), 7.40(2 \mathrm{H}), 7.94 \\ & (1 \mathrm{H}), 8.34(1 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 70.6(\mathrm{CH}), 70.8(\mathrm{CH}), \\ & 73.3(\mathrm{CH}), 73.5(\mathrm{CH}), 78.8 \\ & (\mathrm{CH}), 81.9(\mathrm{CH}), 112.7 \\ & (\mathrm{C}), 115.0(\mathrm{CH}), 115.2 \\ & (\mathrm{CH}), 115.4(\mathrm{CH}), 116.7 \\ & (\mathrm{C}), 122.6(\mathrm{C}), 123.1(\mathrm{C}), \\ & 126.3(\mathrm{CH}), 130.1(\mathrm{CH}), \\ & 130.1(\mathrm{CH}), 144.8(\mathrm{CH}), \\ & 144.8(\mathrm{CH}), 152.7(\mathrm{C}), \\ & 157.2(\mathrm{C}), 161.2(\mathrm{C}), \\ & 175.0(\mathrm{C}) \end{aligned}$	Reference Standard Prepared by KFDA	TLC (identification), HPLC (component determination)	Pueraria Root	Tetrahedron , $\begin{aligned} & 56,8915-8920 \\ & (2000) \end{aligned}$
Magnolol	>95	3267, 2901, 1639, 1497, 1417, 1226, 1114,994, 913,821, 789,643	210,371	$\begin{aligned} & 101.5- \\ & 102 \end{aligned}$	$\begin{aligned} & \text { Curosil PFP (250 } \\ & \text { X4.6 mm), } 220 \\ & \text { nm, AcCN : } \mathrm{H}_{2} \mathrm{O} \\ & (50: 50) \end{aligned}$	0.30 [1: Hexane /EtOAc (5:1), 2 : UV (254nm), p-anisaldehyde$\mathrm{H}_{2} \mathrm{SO}_{4}, 105^{\circ} \mathrm{C}$, $10 \mathrm{~min}]$	$\begin{aligned} & 3.35(4 \mathrm{H}), 5.07(2 \mathrm{H}), 5.11 \\ & (2 \mathrm{H}), 5.65(2 \mathrm{H}), 5.95(2 \mathrm{H}), \\ & 6.93(2 \mathrm{H}), 7.08(2 \mathrm{H}), 7.12 \\ & (2 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 39.3\left(\mathrm{CH}_{2}\right), 115.8\left(\mathrm{CH}_{2}\right), \\ & 116.6(\mathrm{CH}), 123.7(\mathrm{C}), \\ & 129.9(\mathrm{CH}), 131.1(\mathrm{CH}), \\ & 133.2(\mathrm{C}), 137.5(\mathrm{CH}), \\ & 151.1(\mathrm{C}) \end{aligned}$	Reference Standard Prepared by KFDA	TLC (identification), HPLC (component determination)	Magnolia Bark	Chem. Pharm. Bull , 39, 20242036 (1991)

Schizandrin	>95	3525,2936, 1594,1490, 1457,1401, 1321,1274, 1237,1197, 1161,1105, 1010	217, 250	$\begin{array}{\|l\|} \hline 128- \\ 129 \end{array}$	$\begin{aligned} & \text { Curosil PFP (250 } \\ & \text { X } 4.6 \mathrm{~mm}), 220 \\ & \mathrm{~nm}, \mathrm{AcCN}: \mathrm{H}_{2} \mathrm{O} \\ & (50: 50) \end{aligned}$	0.23 [1: nHexane/EtOAc (5:1), 2: UV (254 nm), p-anisaldehyde$\mathrm{H}_{2} \mathrm{SO}_{4}, 105^{\circ} \mathrm{C}$, $10 \mathrm{~min}]$	$\|$$0.81(3 \mathrm{H}), 1.25(3 \mathrm{H}), 1.86$ $(2 \mathrm{H}), 2.34(1 \mathrm{H}), 2.35$ $(1 \mathrm{H}), 2.62(1 \mathrm{H}), 2.65$ $(1 \mathrm{H}), 3.56(3 \mathrm{H}), 3.58$ $(3 \mathrm{H}), 6.53(1 \mathrm{H}), 6.60(1 \mathrm{H})$	$\begin{aligned} & 15.8\left(\mathrm{CH}_{3}\right), 29.8\left(\mathrm{CH}_{3}\right), \\ & 34.1\left(\mathrm{CH}_{2}\right), 40.7\left(\mathrm{CH}_{2}\right), \\ & 41.7(\mathrm{CH})^{)}, 55.8\left(\mathrm{CH}_{3}\right), \\ & 55.9\left(\mathrm{CH}_{3}\right), 60.5\left(\mathrm{CH}_{3}\right), \\ & 6.6\left(\mathrm{CH}_{3}\right), 60.9\left(\mathrm{CH}_{3}\right), \\ & 71.7(\mathrm{C}), 109.8(\mathrm{CH}), \\ & 110.3(\mathrm{CH}), 122.6(\mathrm{C}), \\ & 124.1(\mathrm{C}), 131.7(\mathrm{C}), \\ & 131.8(\mathrm{C}), 140.1(\mathrm{C}), \\ & 140.7(\mathrm{C}), 151.5(\mathrm{C}), \\ & 151.8(\mathrm{C}), 152.0(\mathrm{C}), \\ & 152.3(\mathrm{C}) \end{aligned}$	Reference Standard Prepared by KFDA	TLC (identification), HPLC (component determination)	Scizandra Fruit	$\begin{aligned} & \text { Phytochemistry, } \\ & 27,569-573 \\ & (1988) \end{aligned}$
Ephedrine HCl	>95	$\begin{aligned} & 3325,2971, \\ & 1754,1589 \\ & 1452,1391, \\ & 1237,1113, \\ & 1047,989, \\ & 751,700 \end{aligned}$	202	218	Curosil PFP (250 $\mathrm{X} 4.6 \mathrm{~mm}), 220$ $\mathrm{~nm}, 10 \mathrm{mM}$ ammonium acetate: AcCN (50:50)	$\begin{aligned} & 0.31\left[1: \mathrm{CHCl}_{3} /\right. \\ & \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} \\ & (6: 5: 1), 2: \mathrm{UV} \\ & (365 \mathrm{~nm})] \end{aligned}$	$\begin{aligned} & 1.06(3 \mathrm{H}), 2.77(3 \mathrm{H}), 3.43 \\ & (1 \mathrm{H}), 5.38(1 \mathrm{H}), 7.11-7.67 \\ & (5 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 10.8\left(\mathrm{CH}_{3}\right), 32.8\left(\mathrm{CH}_{3}\right), \\ & 62.2(\mathrm{CH}), 72.5(\mathrm{CH}), \\ & 127.8(\mathrm{CH}), 129.7(\mathrm{CH}), \\ & 130.3(\mathrm{CH}), 142.2(\mathrm{C}) \end{aligned}$	Reference Standard Prepared by KFDA	TLC (identification), HPLC (component determination)	Ephedra Herb	Planta Med., 54, 69-70 (1988)
Amygdarin	>95	3409, 2890, 1629, 1454, 1363, 1067. 1027, 891, 761,702, 618,405	207	214	$\begin{aligned} & \text { Intersil ODS-3 } \\ & (150 \times 4.6 \\ & \mathrm{mm}), 254 \mathrm{~nm}, \\ & \mathrm{AcCN}: \mathrm{H}_{2} \mathrm{O} \\ & (15: 85) \end{aligned}$	$0.73\left[1: \mathrm{CHCl}_{3} /\right.$ $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ $(6: 4: 1), 2: \mathrm{UV}$ $(254 \mathrm{~nm}), p-$ anisaldehyde- $\mathrm{H}_{2} \mathrm{SO}_{4}, 105^{\circ} \mathrm{C}$, $10 \mathrm{~min}]$	$3.15-4.06(12 \mathrm{H}), 4.42$ $(1 \mathrm{H}), 4.42(1 \mathrm{H}), 5.72$ $(1 \mathrm{H}), 7.34(3 \mathrm{H}), 7.41(2 \mathrm{H})$	$\begin{aligned} & \hline 61.6\left(\mathrm{CH}_{2}\right), 69.1\left(\mathrm{CH}_{2}\right), \\ & 69.6(\mathrm{CH}), 70.1(\mathrm{CH}), 70.5 \\ & (\mathrm{CH}), 73.7(\mathrm{CH}), 74.1 \\ & (\mathrm{CH}), 76.3(\mathrm{CH}), 76.3 \\ & (\mathrm{CH}), 76.5(\mathrm{CH}, 76.8 \\ & (\mathrm{CH}), 102.5(\mathrm{CH}), 103.7 \\ & (\mathrm{CH}), 119.4(\mathrm{C}), 128.4 \\ & (\mathrm{CH}), 128.4(\mathrm{CH}), 130.2 \\ & (\mathrm{CH}), 130.2(\mathrm{CH}), 131.2 \\ & (\mathrm{CH}), 133.5(\mathrm{C}) \end{aligned}$	Reference Standard Prepared by KFDA	TLC (identification), HPLC (component determination)	Apricot Kernel	$\begin{aligned} & \text { Phytochemistry, } \\ & 29,1179-1181 \\ & (1990) \end{aligned}$
tanshinone IIA	>95			$\begin{aligned} & 215- \\ & 216 \end{aligned}$	ODS column (I.D. 4.6 mm x 20 cm), 268 nm, Column temp $20^{\circ} \mathrm{C}$, $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}$ (75:25), flow rate $1.0 \mathrm{ml} / \mathrm{min}$	0. 5 [1: Hexane /EtOAc (4:1), 2: UV (254 nm), dil. $\mathrm{H}_{2} \mathrm{SO}_{4}$, $\left.105^{\circ} \mathrm{C}, 10 \mathrm{~min}\right]$	$7.63,7.54(2 \mathrm{H}), 7.22$ $(1 \mathrm{H}), 3.18(2 \mathrm{H}), 2.25$ $(3 \mathrm{H}), 1.18-1.63(4 \mathrm{H}), 1.31$ $(6 \mathrm{H})$	$\begin{aligned} & 29.9(\mathrm{C}-1), 19.1(\mathrm{C}-2), \\ & 37.8(\mathrm{C}-3), 34.6(\mathrm{C}-4), \\ & 144.4(\mathrm{C}-5), 133.4(\mathrm{C}-6), \\ & 120.2(\mathrm{C}-7), 127.4(\mathrm{C}-8), \\ & 126.5(\mathrm{C}-9), 150.1(\mathrm{C}-10), \\ & 183.6(\mathrm{C}-11), 175.7(\mathrm{C}- \\ & 12), 119.9(\mathrm{C}-13), 161.7 \\ & (\mathrm{C}-14), 141.3(\mathrm{C}-15), \\ & 121.1(\mathrm{C}-16), 8.8(\mathrm{C}-17), \\ & 31.8(\mathrm{C}-18), 31.8(\mathrm{C}-19) \end{aligned}$	Reference Standard Prepared by KFDA	TLC (identification)	SALVIAE MILTIORRHIZAE RADIX	Kor. J. Pharmacogy, 30(2), 158-162 (1999)
Evodiamine	>95		$\begin{aligned} & 268,282, \\ & 291 \end{aligned}$	278	ODS column ($4.6 \mathrm{~mm} \times 15$ cm), 254 nm , Column temp $25^{\circ} \mathrm{C}, \mathrm{CH}_{3} \mathrm{CN} /$ $\mathrm{H}_{2} \mathrm{O}$ (1:1), flow rate $1.0 \mathrm{ml} / \mathrm{min}$	0.45 [1: Hexane /EtOAc (3:2), 2: UV (254 nm), dil. dragendorff, $\left.105^{\circ} \mathrm{C}, 10 \mathrm{~min}\right]$			Reference Standard Prepared by KFDA	TLC (identification)	EVODIAE FRUCTUS	

Table 10

List of CRS in Vietnamese Pharmacopoeia

List of CRS in Vietnamese Pharmacopoeia (VP)

Compound	Purity (\%)	UV λ max nm (E 1\%, 1 cm)	mp	HPLC	TLC Rf value (1:Dev. solv., 2:Detect)	Available from	Reference Standard for	Applied to	GC	Specific Optical Rotation
Artemisinin	$\begin{gathered} 98.60 \% \\ \text { (as is) } \end{gathered}$	$\begin{aligned} & \hline 292 \mathrm{~nm} \\ & (592.4) \end{aligned}$	151-154	Lichrosorb RP 18 (ID. $250 \times 4 \mathrm{~mm}$), 260 $\mathrm{nm}, \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ (45:55) add 0.01 M $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ and 0.01 M $\mathrm{Na}_{2} \mathrm{HPO}_{4}$	0.45 [1: Toluen/ AcOH (95:5), 2: In day light or UV 366 nm]	Prepared by National Institute of Drug Quality Control (NIDQC); 100mg 100,000 VND	Identification (IR, TLC) Assay (UV)			
Atropin sulfat	$\begin{gathered} 99.56 \% \\ \text { (Anhydrous) } \end{gathered}$	$\begin{aligned} & 251 \mathrm{~nm}(4.9) \\ & 257 \mathrm{~nm}(5.8) \\ & 263 \mathrm{~nm}(4.4) \end{aligned}$	135-140			$\begin{aligned} & \text { ASEAN RS; } 200 \mathrm{mg} \\ & 40 \text { USD } \end{aligned}$	Identification (IR) Assay (UV)	Flos Daturae Folium Daturae		
Ouabain	86.89\%	495 nm		Test for related substances, RP18, Lichrospher (250 x 4 mm), 220 nm , H2O/ACN (90:10)			Identification (IR) Assay (UV)			
Cafein	99.77% (Anhydrous)		237	RP18 Lichrosorb (250 x 4 mm), 254 nm, $\mathrm{H} 2 \mathrm{O} / \mathrm{ACN} / 1 \mathrm{M}$ $\mathrm{KH}_{2} \mathrm{PO}_{4} / 1 \mathrm{M}$ $\mathrm{CH}_{3} \mathrm{COOH}$	Test for related substances, $\mathrm{CHCl}_{3} / \mathrm{MeOH}$ (3:2), UV 254 nm	Prepared by NIDQC; 200 mg 100,000 VND	Identification (IR) Assay (UV, HPLC)			
Ephedrin HCL	$\begin{gathered} 99.97 \% \\ \text { (Anhydrous) } \end{gathered}$	$\begin{aligned} & 251 \mathrm{~nm}(7.29) \\ & 257 \mathrm{~nm}(9.14) \\ & 263 \mathrm{~nm}(7.03) \end{aligned}$	219-221			ASEAN RS; 200 mg 40 USD	Identification (IR)	Herba Ephedrae		
Reserpin	$\begin{gathered} 99.81 \% \\ \text { (Anhydrous) } \end{gathered}$					ASEAN RS; 200 mg 40 USD	Identification (IR)	Cortex et Radix Rauvolfiae		
Rotundin	$\begin{gathered} 99.4 \% \\ \text { (Anhydrous) } \end{gathered}$	$\begin{array}{r} 281 \mathrm{~nm} \\ (150.21) \end{array}$	144		$\begin{aligned} & \hline \mathrm{CHCl}_{3} / \mathrm{EtOH} / \mathrm{Con} . \\ & \mathrm{NH} 4 \mathrm{OH}(98: 2: 0.5) \end{aligned}$	Prepared by NIDQC; $200 \mathrm{mg} 100,000$ VND	Identification (TLC) Assay (UV)	Tuber Stephaniae glabrae		
Menthol	0.9976					Prepared by NIDQC; (Available in the near future)		Herba Menthae	OVI-G 43 Col. col. temp. $180^{\circ} \mathrm{C}$; FID $260^{\circ} \mathrm{C}$; SPL $240^{\circ} \mathrm{C}$; 1.7 $\mathrm{ml} / \mathrm{min}$	-50.55
Cineol	0.9946					Prepared by NIDQC; (Available in the near future)		Herba Adenosmatis indiani; Herba Adenosmatis caerulei; Herba Adenosmatis bracteosi	OVI-G 43 Col. col. temp $120-180^{\circ} \mathrm{C}$; FID $240^{\circ} \mathrm{C}$; SPL $220^{\circ} \mathrm{C}$; $1.7 \mathrm{ml} / \mathrm{min}$	

Table 11

List of Reference of Medicinal Plant Materials (RMPM) in CP

List of Reference of Medicinal Plant Materials (RMPM) in CP

RMPM	Scientific name	Famlily
Benzoinum	Styrax tonkinensis (Pierre) Craib ex Hart.	Styracaceae
Bulbus Allii Macrostemi	Allium macrostemon Bre., A. chinensis G. Don	Liliaceae
Bulbus Fritillariae Cirrhosae	Fritillaria cirrhosa D. Don, F. unibracteata Hsiao et K. C. Hsia, F. Przewalskii Maxim., F. delavayi Franch.	Liliaceae
Bulbus Fritillariae Hupehensis	Fritillaria hupehensis Hsiao et K. ZC. Hsia	Liliaceae
Bulbus Fritillariae Pallidiflorae	Fritillaria walujewii Regel, P. Pallidiflora Schrenk	Liliaceae
Bulbus Fritillariae Thunbergii	Fritillaria thunbergii Miq.	Liliaceae
Bulbus Fritillariae Ussuriensis	Fritillaria ussuriensis Maxim.	Liliaceae
Bulbus Lilii	Lilium lancifolium Thunb., L. brownii F. E. Brown var. viridulum Baker, L. pumilum DC.	Liliaceae
Calyx Seu Fructus Physalis	Physalis alkekengi L. var. franchetii (Mast.) Makino	Solanaceae
Caulis Erycibers	Erycibe schmidtti Craib	Convolvulaceae
Caulis Piperis Kadsurae	Piper kadsura (Choisy) Ohwi	Piperaceae
Caulis Polygoni Multiflori	Polygonum multiflorum Thunb.	Polygonaceae
Caulis Sargentodoxae	Sargentodoxa cuneata (Oliv.) Rehd. Et Wils.	Sargentodoxaceae
Cornu Cervi Pantotrichum	Cervus nippon Temminck, C. elaphus Linnaeus	Cervidae
Cornu Saigae Tataricae	Saiga tatarica Linnaeus	Bovidae
Cortex Albizae	Albizia julibrissin Durazz.	Leguminosae
Cortex Ailanthi	Ailanthus altissima (Mill.) Swingle	Simaroubaceae
Cortex Dictamni	Dictamnus dasycarpus Turcz.	Rutaceae
Cortex Meliae	Melia toosendan Sieb. et Zucc., M. azedarach L.	Meliaceae
Cortex Mori	Morus alba L.	Moraceae
Cortex Moutan	Paeonia suffruticosa Andr.	Paeoniaceae
Cortex Phellodendri Amurensi	Phellodendron amurense Rupr.	Rutaceae
Cortex Phellodendri Chinensi	Phellodendron chinense Schneider	Rutaceae
Cortex Pseudolaricis	Pseudolarix kaempferi Gord.	Pinaceae
Eupolyphaga Seu Steleophaga	Eupolyphaga sinensis Walker, Steleophaga plancyi (Boleny)	Corydiidae
Exocarpium Citri Grandis	Citrus grandis 'Tomentosa', C. grandis (L.) Osbeck	Rutaceae
Flos Albiziae	Albizia julibrissin Durazz.	Leguminosae
Flos Buddlejae	Buddleja officinalis Maxim.	Buddlejaceae
Flos Campais	Campsis grandiflora (Thunb.) K. Schum., C. radicans (L.) Seem.	Bignoniaceae
Flos Carthami	Carthamus tinctorius L.	Compositae
Flos Celostae Cristatae	Celosia cristata L.	Amaranthaceae
Flos Chrysanthemi Indici	Chrysanthemum Indicum L.	Compositae
Flos Eriocauli	Eriocaulon buergerianum Koern.	Eriocaulaceae
Flos Genkwa	Daphne genkwa Sieb. et Zucc.	Thymelaeaceae
Flos Inulae	Inula japonica Thunb., I. britannica L.	Compositae
Flos Sophorae	Sophora japonica L.	Leguminosae
Folium Apocyni Veneti	Apocynum venetum L.	Apocynaceae
Folium Eucommiae	Eucommia ulmoides Oliv.	Eucommiaceae
Folium Ginko	Ginko biloba L.	Ginkgoaceae
Folium Mori	Morus alba L.	Moraceae
Folium Perillae	Perilla frutescens (L.) Britt.	Labiatae
Folium Rhododendri Daurici	Rhododendron dauricum L.	Ericaceae
Folium Sennae	Cassia angustifolia Vahl, C. acutifolia Delile	Leguminosae
Folium Victicis Negundo	Vitex negundo L. var. cannabifolia (Sieb. et Zucc.) Hand. -Mazz.	Verbenaceae
Fructus Alpiniae Oxyphyllae	Alpinia oxyphylla Miq.	Zingiberaceae
Fructus Anisi Stellati	Illicium verum Hook. f.	Illiciaceae
Fructus Arctii	Arctium lappa L.	Compositae
Fructus Aristolochiae	Aristolochia contorta Bge., A. debilis Sieb. et Zucc.	Aristolochiaceae
Fructus Aurantii Immaturus	Citrus aurantium L., C. sinensis Osbeck	Rutaceae
Fructus Cannabis	Cannabis sativa L.	Moraceae
Fructus Carotae	Daucus carota L.	Umbelliferae
Fructus Carpesii	Carpesium abrotanoides L.	Compositae
Fructus Chaenomelis	Chaenomeles speciosa (Sweet) Nakai	Rosaceae
Fructus Chebulae	Terminalia chebula Retz., T. chebula Retz. var. tomentella Kurt.	Combretaceae
Fructus Citri	Citrus medica L., C. wilsonii Tanaka	Rutaceae
Fructus Citri Sarcodactylis	Citrus medica L. var. sarcodactlis Swingle	Rutaceae
Fructus Cnidii	Cnidium monnieri (L.) Cuss.	Umbelliferae

RMPM	Scientific name	Famlily
Fructus Cratagi	Crataegus pinnatifida Bge. var. major N. E. Br., C. pinnatifida Bge.	Rosaceae
Fructus Evodiae	Evodia rutaecarpa (Juss.) Benth., E. rutaecarpa (Juss.) Benth. var. officinalis (Dode) Huang, E. rutaecarpa (Juss.) Benth. var. bodinieri (Dode) Huang	Rutaceae
Fructus Forsythiae	Forsythia suspensa (Thunb.) Vahl	Oleaceae
Fructus Galangae	Alpinia galanga Willd.	Zingiberaceae
Fructus Gardeniae	Gardenia jasminoides Ellis	Rubiaceae
Fructus Hordei Germinatus	Hordeum vulgare L.	Gramineae
Fructus Jujuae	Ziziphus jujuba Mill.	Rhamnaceae
Fructus Litseae	Litsea cubeba (Lour.) Pers.	Lauraceae
Fructus Lycii	Lycium barbarum	Solanaceae
Fructus Momordicae	Momordica grosvenori Swingle	Cucurbitaceae
Fructus Mume	Prunus mume (Sieb.) Sieb. et Zucc.	Rosaceae
Fructus Piperis Longi	Piper longum L.	Piperaceae
Fructus Schisandrae Chinensis	Schisandra chinensis (Turcz.) Baill.	Schisandraceae
Fructus Schisandra Sphenantherae	Schisandra sphenanthera Rehd. et Wils.	Schisandraceae
Fructus Toosendan	Melia toosendan Sieb. et Zucc.	Meliaceae
Fructus Tribuli	Tribulus terrestris	Zygophyllaceae
Fructus Xanthii	Xanthium sibiricum Patr.	Compositae
Galla Chinensis	Rhus chinensis Mill., R. potaninii Maxim., R. punjabensis Stew. var sinica (Diels) Rehd. et Wils., Melaphis chinensis (Bell) Baker	Anacardiaceae
Ganoderma	Ganoderma lucidum (Leyss ex Fr.) Karst., G. sinense Zhao, Xu et Zhang	Ganodermataceae
Herba Andrographitis	Andrographis paniculata (Burm. f.) Ness	Acanthaceae
Herba Artemisiae Annuae	Artemisia annua	Compositae
Herba Cichorii Radix Cichori	Cichorium glandulosum Boiss. et Huet, C. intybus L.	Compositae
Herba Cirsii	Cirsium setosum (Willd.) MB.	Compositae
Herba Cirsii Japonici	Cirsium japonucum Fisch. ex DC.	Compositae
Herba Cistanches	Cistanche deserticola Y. C. Ma, C. tubulosa (Schrenk) Wight	Orobanchaceae
Herba Corydalis Bungeanae	Corydalis bungeana Turcz.	Papaveraceae
Herba Desmodii Styracifolii	Desmodium styracifolium (Osb.) Mer	Leguminosae
Herba Ecliptae	Eclipta prostrata L.	Compositae
Herba Eupatorii	Eupatorium fortunei Turcz.	Compositae
Herba Hyperici Perforati	Hypericum perforatum L.	Guttiferae
Herba Lamiophlomis	Lamiophlomis rotata (Benth.) Kud	Labiatae
Herba Leonuri	Leonurus japonicus Houtt.	Labiatae
Herba Lobeliae Chinensis	Lobelia chinensis Lour.	Campanulaceae
Herba Lycopodii	Lycopodium japonicum Thunb.	Lycopodiaceae
Herba Potentillae Chinensis	Potentilla chinensis Ser.	Rosaceae
Herba Sarcandrae	Sarcandra glabra (Thunb.) Nakai	Chloranthaceae
Herba Saururi	Saururus chinensis (Lour.) Baill.	Saururaceae
Herba Saussureae Involucratae	Saussurea involucratae (Kar. et Kir.) Sch. Bip.	Compositae
Herba Schizonepetae	Schizonepeta tenuifolia Briq	Labiatae
Herba Selaginellae	Selaginella tamariscina (Beauv.) Spring, S. pulvinata (Hook. Et Grev.) Maxim.	Selaginellaceae
Herba Siegesbeckiae	Siegesbeckia orientalis L., S. pubescens Makino, S. glabrescens Makino	Compositae
Herba Swertiae Mileensis	Swertia mileensis T. N. Ho et W. L. Shih	Gentianaceae
Herba Verbenae	Verbena officinalis L.	Verbenaceae
Herba Violae	Viola yedoensis Makino	Violaceae
Herba Visci	Viscum coloratum (Komar.) Nakai	Santalaceae
Lasiosphaera Seu Calvatia	Lasiosphaera fenzlii Reich., Calvatia gigantea (Batsch ex Pers.) Lloyd, C. lilacina (Mont. et Berk.) Lloyd.	Lycoperdaceae
Lignum Dalbergiae Odorferae	Dalbergia odorifera T. Chen	Leguminosae
Lignum Sappan	Caesalpinia sappan L.	Leguminosae
Margarita	Pteria martensii (Dunker), Hyriopsis cumingii (Lea), Cristaria plicata (Leach)	Peteriidae
Medulla Junci	Juncus effusus L.	Juncaceae
Pericarpium Citri Reticulatae	Citrus reticulata Blanco	Rutaceae
Pericarpium Papaveris	Papaver somniferum L.	Papaveraceae
Pericarpium Trichosanthis	Trichosanthes kirilowii Maxim., T. rosthornii Harms	Cucurbitaceae
Pericarpium Zanthoxyli	Zanthoxylum schinifolium Sieb. Et Zucc., Z. bungeanum Maxim.	Rutaceae
Pheretima	Pheretima aspergillum (E. Perrier), P. vulgaris Chen, P. guillelmi (Michaelsen), P. pectinifera Michaelsen	Megascolecidae
Poria	Poria cocos (Schw.) Wolf	Polyporaceae
Radix Adenophorae	Adenophora tetraphylla (Thunb.) Fisch., A. stricta Miq.	Campanulaceae

RMPM	Scientific name	Famlily
Radix Ampelopsis	Ampelopsis japonica (Thunb.) Makino	Vitaceae
Radix Angelicae Dahuricae	Angelica dahurica (Fisch. ex Hoffm.) Benth. et Hook. f., A. dahurica (Fisch. ex Hoffm.) Benth. et Hook. f. var. formosana (Boiss.) Shan et Yuan	Umbelliferae
Radix Angelicae Pubescentis	Angelica pubescens Maxim. f. biserrata Shan et Yuan	Umbelliferae
Radix Angelicae Sinensis	Angelica sinensis (Oliv.) Diels	Umbelliferae
Radix Astragali	Astragalus membranaceus (Fisch.) Bge. var. mongholicus (Bge.) Hsiao, A. membranaceus (Fisch.) Bge.	Leguminosae
Radix Aucklandiae	Aucklandia lappa Decne.	Compositae
Radix Bupleuri	Bupleurum chinense DC. B. scorzonerifolium Willd.	Umbelliferae
Radix Changii	Changium smyrnioides Wolff	Umbelliferae
Radix Condonopsis	Condonopsis pilosula (Franch.) Nannf., C. pilosula Nannf. var. modesta (Nannf.) L. T. Shen, C. tangshen Oliv.	Campanulaceae
Radix Curcumae	Curcuma wenyujin Y. H. Chen et C. Ling, C. longa L., C. kwangsiensis S. G. Lee et C. F. Liang, C. phaeocaulis Val.	Zingiberaceae
Radix Dipsaci	Dipsacus asperoides C. Y. Chng et T. M. Ai	Dipsacaceae
Radix Et Rhizoma Asteris	Aster tataricus L. f.	Compositae
Radix Et Rhizoma Cynanchi Atrati	Cynanchum atratum Bge., C. versicolor Bge.	Asclepiadaceae
Radix Et Rhizoma Notoginseng	Panax notoginseng (Burk.) F. H. Chen	Araliaceae
Radix Et Rhizoma Rhei	Rheum palmatum L., R. tanguticum Maxim. ex Balf., R. officinale Baill.	Polygonaceae
Radix Et Rhizoma Rubiae	Rubia cordifolia L.	Rubiaceae
Radix Et Rhizoma Salviae Miltiorrhizae	Salvia miltiorrhiza Bge.	Labiatae
Radix Et Rhizoma Seu Caulis Acanthopanacis Senticosi	Acanthopanax senticosus (Rupr. et Maxim.) Harms	Araliaceae
Radix Et Rhizoma Ginseng	Panax ginseng C. A. Mey.	Araliaceae
Radix Et Rhizoma Ginseng Rubra	Panax ginseng C. A. Mey.	Araliaceae
Radix Et Rhizoma Glycyrrhizae	Glycyrrhiza uralensis Fisch. G. inflata Bat. G. glabra L.	Leguminosae
Radix Gentianae Macrophyllae	Gentiana Macrophylla Pall., G. straminea Maxim., G. crassicaulis Duthie ex Burk., G. dahurica Fisch.	Gentianaceae
Radix Hedysari	Hedysarum polybotrys Hand. -Mazz.	Leguminosae
Radix Inulae	Inula helenium	Compositae
Radix Kansui	Euphorbia kansui T. N. Liou ex T. P. Wang	Euphorbiaceae
Radix Knoxiae	Knoxia valerianoides Thorel et Pitard	Rubiaceae
Radix Linderae	Lindera aggregata (Sims) Kosterm.	Lauraceae
Radix Morindae Officinalis	Morinda officinalis How	Rubiaceae
Radix Ophiopogonis	Ophiopogon japonicus (Thunb.) Ker-Gawl.	Liliaceae
Radix Paeoniae Alba	Paeonia lactiflora Pall.	Paeoniaceae
Radix Paeoniae Rubra	Paeonia lactiflora Pall., P. veitchii Lynch	Paeoniaceae
Radix Panacis Quinquefolii	Panax quinquefolium L.	Araliaceae
Radix Platycodonis	Platycodon grandiflorum (Jacq.) A. DC.	Campanulaceae
Radix Polygalae	Polygala tenuifolia Willd., Polygala sibirica L.	Polygalaceae
Radix Polygoni Multiflori	Polygonum multiflorum Thunb.	Polygonaceae
Radix Psedostellariae	Psedostellaria heterophylla (Miq.) Pax ex Pax et Hoffm.	Fagaceae
Radix Rehmanniae	Rehmannia glutinosa Libosch.	Scrophulariaceae
Radix Rhapontici	Rhaponticum uniflorum (L.) DC.	Compositae
Radix Saposhnikoviae	Saposhnikovia divaricata (Turcz.) Schischk.	Umbelliferae
Radix Scrophulariae	Scrophularia ningpoensis Hemsl.	Scrophulariaceae
Radix Scutellariae	Scutellaria baicalensis Georgi	Labiatae
Radix Vladimiriae	Vladimiria souliei (Franch.) Ling, V. souliei (Franch.) Ling var. cinerea Ling	Aristolochiaceae
Radix Zanthoxyli	Zanthoxylum nitidum (Roxb.) DC.	Rutaceae
Ramulus Et Folium Picrasmae	Picrasma quassioides (D. Don) Benn.	Simaroubaceae
Rhizoma Acori Calami	Acorus calamus L.	Araceae
Rhizoma Acori Tatarinowii	Acorus tatarinowii Schott	Araceae
Rhizoma Alpiniae Officinarum	Alpinia officinarum Hance	Zingiberaceae
Rhizoma Atractylodis	Atractylodes lancea (Thunb.) DC. A. chinensis (DC.) Koidz.	Compositae
Rhizoma Atractylodis Macrocephalae	Atractylodes macrocephala Koidz.	Compositae
Rhizoma Belamcandae	Belamcanda chinensis (L.) DC.	Iridaceae
Rhizoma Bletillae	Bletilla striata (Thunb.) Reichb. f.	Orchidaceae
Rhizoma Chuanxiong	Ligusticum chuanxiong Hort.	Umbelliferae
Rhizoma Coptidis	Coptis chinensis Franch., C. deltoidea C. Y. Cheng et Hsiao, C. teeta Wall.	Ranunculaceae
Rhizoma Corydalis	Corydalis yanhusuo W. T. Wang	Papaveraceae
Rhizoma Curcumae	Curcuma phaeocaulis Val., C. kwangsiensis S. G. Lee et C. F. Liang, C. wenyujin Y. H. Chen et C. Ling	Zingiberaceae

RMPM	Scientific name	Famlily
Rhizoma Curcumae Longae Rhizoma Cyperi Rhizoma Dioscoreae Septemlobae Rhizoma Dryopteris Crassirhizomae Rhizoma Et Radix Ligustici Rhizoma Et Radix Notopterygii Rhizoma Et Radix Polygoni Cuspidati Rhizoma Fagopyri Dibotryis Rhizoma Gastrodiae Rhizoma Iridis Tectori Rhizoma Menispermi Rhizoma Paridis Rhizoma Phragmitis Rhizoma Picrorhizae Rhizoma Sparganii Rhizoma Wenyujim Concisa Rhizoma Zingiberis Sanguis Draxonis Semen Arecae Semen Cassiae Semen Coicis Semen Myristicae Semen Nelumbinis Semen Nigellae Semen Pharbitidis Semen Raphani Semen Vaccariae Spica Schizonepetae Squama Manis Stigama Croci Styrax Venenum Bufonis	Curcuma longa L. Cyperus rotundus L. Dioscorea septemloba Thunb., D. futschauensis Uline ex R. Kunth Dryopteris Crassirhizoma Nakai Ligusticum sinense Oliv., L. jeholense Nakai et Kitag. Notopterygium incisum Ting ex H. T. Chang, N. forbesii Boiss. Polygonum cuspidatum Sieb. et Zucc. Fagopyrum dibotrys (D. Don) Hara Gastrodia elata Bl. Iris tectorum Maxim. Menispermum dauricum DC. Paris polyphylla Smith var. yunnanensis (Franch.) Hand. -Mazz., P. polyphylla Smith var. chinensis (Franch.) Hara Phragmites communis Trin. Picrorhiza scrophulariiflora Pennell Sparganium stoloniferum Buch. -Ham. Curcuma wenyujin Y. H. Chen et C. Ling, Zingiber officinale Rosc. Daemonorops draco Bl. Areca catechu L. Cassia obtusifolia L., C. tora L. Coix lacryma-jobi L. var. mayuen (Roman.) Stapf Myristica fragrans Houtt. Nelumbo nucifera Gaertn. Nigella glandulifera Freyn Pharbitis nil (L.) choisy, P. purpurea (L.) Voigt Raphanus sativus L. Vaccaria segetalis (Neck.) Garcke Schizonepeta tenuifolia Briq. Manis pentadactyla Linnaeus Crocus sativus L. Liquidambar orientalis Mill. Bufo bufo gargarizans Cantor, B. melanostictus Schneider	Zingiberaceae Cyperaceae Dioscoreaceae Dryopteridaceae Umbelliferae Umbelliferae Polygonaceae Polygonaceae Orchidaceae Iridaceae Menispermaceae Liliaceae Gramineae Scrophulariaceae Sparganiaceae Zingiberaceae Zingiberaceae Arecaceae Arecaceae Leguminosae Gramineae Myristicaceae Nymphaeaceae Ranunculaceae Convolvulaceae Brassicaceae Caryophyllaceae Labiatae Manidae Iridaceae Hamamelidaceae Bufonidae

Table 12

List of Reference of Medicinal Plant Materials (RMPM)
in KP

List of Reference of Medicinal Plant Materials (RMPM) in KP

RMPM	Scientific name	Family
Alismatis Rhizoma	Alisma olientale Juzepczuk	Alismataceae
Anethi Fructus	Anethum graveolens L.	Umbelliferae
Angelicae Dahurica Root	Angelica dahurica Bentham et Hooker	Umbelliferae
Angelicae Gigantis Radix	Angelica gigas Nakai	Umbelliferae
Angelicae koreanae Radix	Ostericum koreanum Maxim.	Umbelliferae
Angelicae koreanae Radix	Notepterysium incisum Ting ex H.T.Chang	Umbelliferae
Angelicae koreanae Radix	Notopterysium forbesii Boiss.	Umbelliferae
Angelicae Tenuissimae Radix	Angelica tenuissima Nakai	Umbelliferae
Anthrisci Radix	Angelica decursiva Franchet et Savatier	Umbelliferae
Atractylodis Rhizoma	Atractylodes lancea D.C	Compositae
Atractylodis Rhizoma	Atractylodes chinensis Koidzumi	Compositae
Atractylodis Rhizoma Alba	Atractylodes japonica Koidzumi	Compositae
Atractylodis Rhizoma Alba	Atractylodes ovata Koidzumi	Compositae
Aurantii Nobilis Pericarpiurn	Citrus unshiu Markovich	Rutaceae
Bupleurum Root	Bupleurum falcatum L.	Umbelliferae
Cnidium Rhizome	Cnidium officinale Makino	Umbelliferae
Ferulae Resina	Ferula assafoetida L.	Umbelliferae
Foeniculi Fructus	Foeniculum vulgare Miller	Umbelliferae
Glehnia Root	Glehnia littoralis Fr. Schmidt et Miquel	Umbelliferae
Leonuri Herba	Leonurus sibiricus L.	Labiatae
Paeoniae Radix	Paeonia lactiflora Pallas	Paeoniaceae
Ponciri Fructus	Poncirus trifoliata Rafinesqul	Rutaceae
Scirpi Rhizoma	Sparganium stoloniferum Buchanan-Hamilton	Sparganiaceae
Smilacis Rhizoma	Smilax china L.	Liliaceae
Torilidis Fructus	Cnidium morieri (L.) Cuss.	Umbelliferae
Torilidis Fructus	Torilis japonica Decandolle	Umbelliferae

Table 13

List of Reference of Medicinal Plant Materials (RMPM) in VP

List of Reference of Medicinal Plant Materials (RMPM) in VP

RMPM	Scientific name	Family
Blackberrylily Rhizome	Belamcanda chinesis (L.) DC.	Iridaceae
Cuttlebone	Sepia esculenta Hoyle	Sepiadae
Cynara Leaf	Cynara scolymus L.	Compositae
Dahurian Angelica Root	Angelica dahurica (Fisch. ex Hoffm.) Benth. et Hook	Umbelliferae
Dwarf Lilyturf Turber	Ophiopogon Japonicus (L.f) Ker-Gawl	Asparagaceae
Erythrina Variegata leaf	Erythrina variegata L.	Leguminosae
Fortune Eupatorium Herb	Eupatorium fortunei jurcz.	Compositae
Heartleaf Houttuynia Herb	Houttuynia cordata Thunb.	Saururaceae
Java Brucea Fruite	Brucea javanica (L.) Merr.	Simarubaceae
Kudzuvine Root	Pueraria thomsonii Benth.	Leguminosae
Largehead Atractylodes Rhizome	Atractylodes macrocephala Koidz.	Compositae
Motherwort Herb	Leonurus japonicus Houtt.	Lamiaceae
Obscured homalomena	Homalomena occulta (Lour) Schott.	Araceae
Ocimum gratissimum Herb	Ocimum gratissimum L.	Lamiaceae
Ocimum tenuiflorum Herb	Ocimum tenuiflorum L.	Lamiaceae
Passiflora Herb	Passiflora foetida L.	Passifloraceae
Peper Fruit	Piper nigrum L.	Plantaginaceae
Plantago leaf	Plantago major L.	
Siberian Cocklebur Fruit	Xanthium strumarium L.	Compositae
Snowbelleaf Tickclover Herb	Desmodium styracifolium (Osb.) Merr	Menispermaceae
Stephania Tuber	Stephania sp.	Leguminosae
Styphnolobium Flower	Styphnolobium japonicum (L.) schott	Amaranthaceae
Twotoothed Achyranthes Root	Achyranthes bidentata Blume	
Wedelia Herb	Wedelia chinensis (Osbeck) Merr.	

Section 4

Table 14-15 complied by EWG IV for Analytically Validated Methods

Table 14 to 15 are lists of analytically validated chemical assay, identification test and purity test for herbal materials (i.e. methods that have been formally validated in each country). This part of information is not included in any published pharmacopoeia, but directly provided by the pharmacopoeia commission of the country involved. Only Japan and Koran pharmacopoeia commissions provided such a list for this project.

Table 14 and Table 15 list analytically validated methods from Japan and Korea respectively. The information in the list includes names of herbal materials, target compound, for what purpose (e.g. chemical assay, purity test), method, accuracy/trueness, precision, specificity, detection/quantitation limit, linearity, range and published reference.

Table 14

Analytically Validated Chemical Assay, Identification Test and Purity Test for Herbal Materials in JP15

Analytically validated chemical assay, identification test and purity test for herbal materials in JP15

Herbal materials	Target compound	Purpose	Method	Accuracy/ Trueness	Precision	Specificity	Detection/Quantit ation limit	Linearity	Range	References and notes
CAPSICI FRUCTUS	capsaicin and dihydrocapsaicin	chemical assay (component determination)	HPLC	\bigcirc	repeatability/ intra-assay precision	\bigcirc	not needed	\bigcirc	\bigcirc	
SWERTIAE HERBA	swertiamarin	chemical assay (component determination)	HPLC	\bigcirc	repeatability/ intra-assay precision, reproducibility	\bigcirc	not needed	\bigcirc	\bigcirc	
UNCARIAE UNCIS CUM RAMULUS	rhynchophylline	chemical assay (component determiantion)	HPLC	\bigcirc	repeatability/ intra-assay precision, reproducibility	\bigcirc	not needed	\bigcirc	\bigcirc	Yomura, K. et al, lyakuhin Kenkyu 35, 143-165 (2004)
ASIASARI RADIX	aristolochic acid I	purity test (no detection)	HPLC	not needed	not needed	\bigcirc	\bigcirc detection limit	not needed	not needed	
CORYDALIS TUBER	dehydrocorydaline nitrate	chemical assay (component determiantion)	HPLC	\triangle	repeatability/ intra-assay precision	\bigcirc	not needed	\bigcirc	\times	partially validated
PROCESSI ACONITI RADIX (POWDERED ACONITI RADIX PULVERATA)	aconitine, jesaconitine, hypaconitine and mesaconitine	purity test	HPLC	\bigcirc	repeatability/ intra-assay precision	\bigcirc	\bigcirc detection limit	\bigcirc	\bigcirc	Nakamura, Y. et al., J. Nat. Med., 60, 285-294 (2006)
ELEUTHEROCOCCI SENTICOSI RHIZOMA	eleuteroside B	identification test (deteciton)	HPLC	\bigcirc	not needed	\bigcirc	\bigcirc detection limit	not needed	not needed	Maruyama, T. et al., Planta Medica, submitted
ASTRAGALI RADIX, POLYGALAE RADIX, GLYCYRRIHIZAE RADIX, CINNAMOMI CORTEX, GINSENG RADIX RUBRA, ASIASARI RADIX, CORNI FRUCTUS, SENNAE FOLIUM, PERILLAE HERBA, ZIZYPHI FRUCTUS, AURANTII NOBILIS PERICARPIUM, GINSENG RADIX, ERIOBOTRYAE FOLIUM, MOUTAN CORTEX	total BHC and total DDT	purity test	GC	\bigcirc	repeatability/ intra-assay precision	\bigcirc	\bigcirc detection limit	\bigcirc	\bigcirc	Suzuki, H. et al., lyakuhin Kenkyu 567-581 (2006)
GINSENG RADIX RUBRA, GINSENG RADIX (GINSENG RADIX PULVERATA)	ginsenoside Rg1 and ginsenoside Rb1	chemical assay (component determination)	HPLC	\bigcirc	repeatability/ intra-assay precision	\bigcirc	not needed	\bigcirc	\bigcirc	Yamamoto, K., et al., lyakuhin Kenkyu 36, 211- $222 \text { (2005) }$
BUPLEURI RADIX	saikosaponin a and saikosaponin d	chemical assay (component determination)	HPLC	\bigcirc	repeatability/ intra-assay precision	\bigcirc	not needed	\bigcirc	\bigcirc	Suzuki, H. et al., Natural Medicine 58, 138-144 (2004)

Table 15

Analytically Validated Chemical Assay or Purity Test for Herbal Materials in KP

Analytically validated chemical assay or purity test for herbal materials in KP

Herbal materials	Target compound	Purpose	Method	Accuracy/ Trueness	Precision	Specificity	Detection/Quantit ation limit	Linearity	Range	Comment
Bezoar Bovis	Combined bilirubin (Total bilirubinfree bilirubin)	chemical assay (component determination)	HPLC	\bigcirc	repeatability/ reproducibility/ intermediated precision	\bigcirc	$0.3-25 \mu \mathrm{~g} / \mathrm{ml}$ (range) $0.03 \mu \mathrm{~g} / \mathrm{ml}$ (detection limit)	\bigcirc	\bigcirc	KP7
Angelicae gigantis Radix	decurcin/ decurcinol angelate	chemical assay (component determination)	HPLC	\bigcirc	repeatability/ reproducibility/ intermediated precision	\bigcirc	$\begin{aligned} & 2.0-75.0 \mu \mathrm{~g} / \mathrm{ml} \\ & \text { (range) } \end{aligned}$	\bigcirc	\bigcirc	KP7
Puerariae Radix	puerarin	chemical assay (component determination)	HPLC	x	x	\bigcirc	not needed	\bigcirc	\bigcirc	KP7
Persicae Semen	amigdaline	chemical assay (component determination)	HPLC	x	x	\bigcirc	not needed	\bigcirc	\bigcirc	KP7
Moutan Cortex Radicis	paeonol	chemical assay (component determination)	HPLC	x	x	\bigcirc	not needed	\bigcirc	\bigcirc	KP7
Corni Fructus	loganin	chemical assay (component determination)	HPLC	x	x	\bigcirc	not needed	\bigcirc	\bigcirc	KP7
Bupleuri Radix	saikosaponin a	chemical assay (component determination)	HPLC	x	x	\bigcirc	not needed	\bigcirc	\bigcirc	KP7
Aurantii Nobilis Pericarpium	hesperidin	chemical assay (component determination)	HPLC	x	x	\bigcirc	not needed	\bigcirc	\bigcirc	KP7
Scutellariae Radix	baicalin	chemical assay (component determination)	HPLC	x	x	\bigcirc	not needed	\bigcirc	\bigcirc	KP7
Rehmaniae Radix	5-hydroxymethyl 2furraldehyde	chemical assay (component determination)	HPLC	x	x	\bigcirc	not needed	\bigcirc	\bigcirc	KP7
Acanthopanacis Cortex	acanthoside D	chemical assay (component determination)	HPLC	x	x	\bigcirc	not needed	\bigcirc	\bigcirc	KP7

Section 5

Table 16 complied by EWG V for Information on General Test

Table 16 is the Comparative table on general testing methods for crude drugs in JP, KP, CP and VP. This table lists the detailed information on general testing methods described in each pharmacopoeia. Part of these methods is referred in Table 4. Testing methods described in this table include sampling, foreign matter, preparation of the test sample of analysis, loss on drying, total ash, acid-insoluble ash, sulphated ash, water-soluble ash, extract content, essential oil content, microscopic examination, arsenic limit test, heavy metal limit test, description of general quality control method (CP only), processing of crude drugs, and determination of tanninoids and cineol.

Table 16

Comparative Table on General Testing Methods for Crude Drugs in JP, KP, CP and VP

JP	KP	CP	VP
Sampling	Sampling	Sampling of Crude Drugs	SAMPLING OF CRUDE DRUGS
Unless Otherwise specified, sample should be taken by the following methods. If necessary, preserve the samples in tight containers. (1) When crude drugs to be sampled are smallsized, cut or powdered, $\mathbf{5 0}$ to $\mathbf{2 5 0} \mathrm{g}$ of sample should be taken after mixing thoroughly. (2) When crude drugs to be sampled are largesized, 250 to 500 g of sample should be taken after mixing thoroughly. (3) When the mass of each single piece of the crude drugs is not less than 100 g , not less than 5 pieces should be taken for a sample, or not less than 500 g of the sample should be taken after cutting to a suitable size and mixing thoroughly.	Unless Otherwise specified, sample should be taken by the following methods. If necessary, preserve the samples in tight containers. (1) When crude drugs to be sampled are smallsized, cut or powdered, $\mathbf{5 0}$ to $\mathbf{2 5 0} \mathrm{g}$ of sample should be taken after mixing thoroughly. (2) When crude drugs to be sampled are largesized, 250 to 500 g of sample should be taken after mixing thoroughly. (3) When the mass of each single piece of the crude drugs is not less than 100 g , not less than 5 pieces should be taken for a sample, or not less than 500 g of the sample should be taken after cutting to a suitable size and mixing thoroughly.	Sampling of Crude Drugs refers to the method used to sort the crude drugs for examination. The validity of sampling affects directly the precision and accuracy of the examination. The procedure for sampling should be followed in details. 1. Examine the confirmation of the name, source of material, specification and package form of the cargo before sampling. Examine the intactness cleanliness of package and contamination of moulds and foreign matter, make notes in detail. The abnormal packages should be examined separately. 2. The general requirements for sampling of crude drugs in a consignment are as follows: when the total number of package less than 5 , the packages are sampled one by one. $5-99$ packages, 5 packages are sampled at random; 100-1000 packages, 5% are sampled; more than 1000 packages, 1% of the part in excess of 1000 packages are sampled; Precious crude drugs are sampled one by one, regardless of the number of packages. 3. If the material is in crushed or powdered form or in pieces of less than 1 cm in size, at least $2-3$ portions of sample are taken by suitable means from different parts in each package. If volume of package is large, samples taken should be 10 cm in depth below the surface from different parts. The quantity of samples taken is defined as follows: Common drugs: $100-500 \mathrm{~g}$ Powdered drugs: $\mathbf{2 5} \mathrm{g}$ Precious drugs: $5-10 \mathrm{~g}$ As for the drugs of large size or large number, representative samples can be taken on the basis of real situation. 4. Mix the samples thoroughly, i. e. the total quality of samples taken. if the total quantity of samples taken is several times that required for the testing, take an avarage sample by quartering, until sufficient quantity of sample is obtained for testing and retention. 5. The quantity or average sample taken should be not less than 3 times of that required for the testing, using one third for analysis, another one third for verification and the remaining as aretention which should be kept.	Sampling of clude drugs refers to the method used to sort the crude drugs for examination. The representativeness of samples affects directly the prescision and accuracy of the examination. Attention should be paied to the following points while sampling: a) Valify the name, source of the material, specifications and forms of packages before sampling. Examine the intactness, cleanliness of the packagem the contamination of modules and foreign matter, make notes in details. Abnormal packages should be eamined more carefully b) The general requirements for sampling of crude drugs are as follows: For a number of packages: less tha 5 , every package is sampled; less than 100, 5 packages are sampled; from 100 to $1000,5 \%$ of packages are sampled; over 1000, 50 packages and 1% of the number in excess of 1000 packages are sampled. For precious crude drugs every package is sampled, regardless of the number of packages. c) If the material is in scraps or powder form or in pieces of less than 1 cm in size, at least 2-3 portions of sample are taken by suitable means from different places in each package. If the number of packages is small, the amount of sample taken shoule be not less than 3 times the quantity required for testing. If the number of packages is large, the amount of sample taken is as follows: Common drugs: 100-500 g Powdered drugs: $\mathbf{2 5} \mathrm{g}$ Precious drugs: $\mathbf{5 - 1 0} \mathrm{g}$ (unless otherwis specified) different different places of a package (at 10 cm in depth below the surface for large package). d) Mix the samples taken as required for the test sample. If the sample size of drug is small, take an aberage sample by quartering method as follows: Spread the samples (after mixing throughly) in a square, then divide the sample into 4 equal parts by diagonals; take two opposite parts and mix again. With the mixture obtained, repeat the quartering in the wame way until a sufficient amount of sample is obtained for testing and retention. In the case of large size drugs, the avarage samples can be obtained with any appropriate methods. The amount of an average sample should not less than 3 times of that required for testing, using one third for analysis, another for verification and the remaining as retained sample which should be kept at least for one year.
Foreign matter	Foreign matter	Determination of Foreign Matter	DETERMINATION OF FOREIGN MATTER IN CRUDE DRUGS
Unless otherwise specified, weigh 25 to $\mathbf{5 0 0} \mathrm{g}$ of the sample, spread out in a thin layer, and separate the foreign matter by inspecting with the naked eye or with the use of a magnifying glass of 10 magnifications. Weigh, and determine the percentage of foreign matter.	Unless otherwise specified, weigh 25 to $\mathbf{5 0 0} \mathrm{g}$ of the sample, spread out in a thin layer, and separate the foreign matter by inspecting with the naked eye or with the use of a magnifying glass of 10 magnifications. Weigh, and determine the percentage of foreign matter.	Foreign mater consists of any or all of the following: 1. The biological origin of which is the same as that specified in the monograph concerned but the appearance or botanical parts is different. 2. The biological origin of which differs from that specified in the monograph concerned. 3. Foreign mineral matters such as stones, sand, lumps of soil. Method (1) Weight a quantity of the drug as specified in the monograph and spread out in a thin layer. Detect the foreign matter by inspection with naked eye or with a lens ($5-10 \mathrm{X}$), or by the use of a suitable sieve, If necessary, to separate the foreign matter. (2) Weight separately each kind of foreign matter and calculate the percentage content.	Foreign matter in herbal drugs consists of any or all of the following: Foreign mineral mannter such as stons, sand, lumps of soil. Other herbs and other parts of the plant that are not specified as clude drugs. Remains of insects. Method: Weigh a quantity of the crude drug as specified in the monograph and spread out in a thin layer. Detect the foreign matter by inspection with naked eve or with a lens or bv use of a suitable sieve, if necessary, to separate the foreign matter. Weigh the foreign matter and calculate the percentage, using the expression: $\mathrm{X} \%=\mathrm{a} / \mathrm{p} \times 100$ where: a: Mass of foreign matter (g), p : Mass of test sample being examined (g)
Preparation of the test sample for analysis	Preparation of the test sample for analysis		
Preparations are to be made by mixing the sample well. Powdered drugs should be used as they are, and in the case of unpowdered drugs, unless otherwise specified, grind the sample into powder. If the sample cannot be ground into powder, reduce it as finely as possible, spread it out in a thin layer, and withdraw a typical portion for analysis. If necessary, preserve the test sample in a tight container.	Preparations are to be made by mixing the sample well. Powdered drugs should be used as they are, and in the case of unpowdered drugs, unless otherwise specified, grind the sample into powder. If the sample cannot be ground into powder, reduce it as finely as possible, spread it out in a thin layer, and withdraw a typical portion for analysis. If necessary, preserve the test sample in a tight container.		
Loss on drying	Loss on drying	Determination of Loss on Drying	DETERMINAITON OF LOSS ON DRYING
Unless otherwise specified, transfer 2 to $6 \mathbf{g}$ of the test sample for analysis to a tared weighing bottle, and weigh accurately. Dry at $105^{\circ} \mathrm{C}$ for 5 hours, allow to cool in a desiccator (silica gel), and weigh accurately. Continue the drying at $105^{\circ} \mathrm{C}$, and weigh accurately at 1 -hour intervals.	Unless otherwise specified, transfer 2 to 6 g of the test sample for analysis to a tared weighing bottle, and weigh accurately. Dry at $105^{\circ} \mathrm{C}$ for 5 hours, allow to cool in a desiccator (silica gel), and weigh accurately. Continue the drying at $105^{\circ} \mathrm{C}$, and weigh accurately at 1 -hour intervals.	Mix the substance being examined thoroughly, if it is in the form of large crystals, reduce them to a size of about 2 mm by crushing. Place 1 g or the amount specified under individual monographs of the substance being examined in a tarred, shallow weighing bottle, previously dried to constant weight under the conditions specified in individual monographs, unless otherwise directed. The substance being	Loss on drying is the loss of mass, expressed as percentage (m / m), of the test sample being dried under conditions specified in the individual monograph. The loss of mass after during represents the loss of the absorbed water, one part or the whole water of crystallisation and other volatile substances present in the sample being examined. The determination of loss of drying should not affect basic physico-

VP

CP
Determination of Loss on Drying
examined should be evenly distributed to form a layer of not more than 5 mm in thickness, or not more than 10 mm in the case of bulky remove the stopper and put in beside the bottle, or leave it on the bottle in half open position. Upon the opening of the drying chamber or desiccator, the bottle should be closed promptly. If the substance is before weighing. If the substance melts at a lower temperature than the specified drying temperature, maintain the bottle with its content below the melting temperature until most of water is removed, then dry it
under the specified conditions. If a vacuum desiccator or constant under the specified conditions. If a vacuum desiccator or constant 20 mm Hg) or less should be maintained unless otherwise directed. T desiccants used in a desiccator are usually anhydrous calcium chloride ilica gel or phosphorus pentoxide. Phosphorus pentoxide is often use be kept fully effective.

ERMINAITON OF LOSS ON DRYING
hemical properties of the substance being examined; so in each among the following methods:
Method 1: drying in an oven under atmospheric pressure Method 2: drying under reduced pressure
strong desiccant such as oncentrated suric aciem phosphorus pent oxide, anhydrous calcium For each method, detailed specific conditions are prescribed in the ndividual monograph for the substance being examined. When rescribed in the monograph:
gram of the sample being examined is it means method 1 used: one hours and the loss mass should not exceed 10 mg .
"Not exceed 0.5% (1 g , phosphorous pent oxide, 24 hours)" means nethod 2 is used: one gram of the substance being examined is dried presence of phosphorus pent oxide as desiccant and the loss of mass should not exceed 5 mg .
Nram of the substance being examined is means method 3 is used: one ram of the subsuced pressure (2 kPa) with the presence of desiccant silica gel and the loss of mass should not exceed 2 mg .
When the drying time is not specified in the monograph, the sample hould be d dod cold weightings should not differ by more than 0.5 milligram, the second
weighing being made after an additional period of drying (1 hour in an oven or 6 hours in a desiccator).
Method
he container used in weightings ca be a Petri dish or a weighing bottle which is dried for 30 minutes following the method and conditions determine its mass. Place immediately a quantity of the substance being examined (the quantity prescribed in the monograph, with a
deviation of $\pm 10 \%$) in the container and weigh it accurately. Unless therwise stated in the monograph, the sample being examined is venly spread to form a layer of a thickness not more than 5 mm . if the sample being examined contains large pieces, it should be quickly ground to obtain paxies ons prescribed in the monograph using the same drying device as that has been used for drying the container. When drying in an oven, the temperature in the oven used should not differ by more than $\pm 2^{\circ} \mathrm{C}$ from the specified temperature. After drying, the sample is allowed to cool in a desiccator. over silica ael as
desiccant, down to room temperature, then weighed immediatel if the substance being examined melts at a temperature lower than the specified temperature, it should be kept for 1 to 2 hours at a
mperature $5^{\circ} \mathrm{C}$ to $10^{\circ} \mathrm{C}$ low or sample in the form
the form of capsules or draggers, the shells should be powder of 2 mm particles, and amount of powder equivalent to at least draggers or capsules is taken for testing.

otherwise prescribed method 1 is applied sample is ground into pieces not larger than $3 \mathbf{~ m m}$ in diameter, th hickness of 2 g to 5 g is taken and evenly spread to form a layer of mple is porous material). The sample is dried as described in the monograph at the specified temperature for the prescribed period of | mone. |
| :--- |
| time. |

Determination of Ash (Total ash)

DETERMINATION OF ASH

Pulverize the material being examine, pass through No. 2 sieve, mix Place $2-3 \mathrm{~g}(3-5 \mathrm{~g}$ for the determination of acid-insoluble ash) of
powdered drug in a tarred crucible, weigh accurately (to nearest 0.01 gnite slowly till the sample is completely carbonized, keep it from burning with care, raise the temperature gradually to $500-600^{\circ} \mathrm{C}$, ncinerate to constant weight and the ash is carbon-free. Calculate the cannot be obtained in this way, cool the crucible and moisten the esidue with hot water or 2 ml of 10% ammonium nitrate solution a water bath, ignite the residue as above until carbonfree ash is obtained.

Use method 1 unless otherwise directed in the monograph Method 1: For vegetable drugs: Incinerate 2 to 3 of the ground drug in a tarred platinum or silica crucible at a temperature not exceed $450^{\circ} \mathrm{C}$ un ree from carbon, cool and weigh. If a carbon-free ash cannot be lass rod, filter through an ashless filter paper. Wash the glass stair with filter paper, combine the washings and the filtrate. Place the filter paper and the residue in a crucible and ignite until a white or almost white ash obtained. Add the filtrate to residue in the crucible, evaporate to dryness, and ignite at a temperature not exceeding $450^{\circ} \mathrm{C}$ to constant
mass. Calculate the percentage of ash with reference to air dried drug.
or other substan : Cary out the above method using 1 g , unless

	JP	KP	CP	VP
	Total ash	Total ash	Determination of Ash (Total ash)	DETERMINATION OF ASH
	constant mass, cool, weigh accurately, and determine the amount (\%) of total ash. If a carbonized substance remains and constant mass cannot be obtained in the abovementioned method, extract the charred mass with hot water, collect the insoluble residue on filter paper for assay, and incinerate the resi-due and filter paper until no carbonized substance remain in the ash. Then add the filtrate, evaporate it to dryness, and incinerate. Cool, weigh accurately, and determine the mass (\%) of the total ash. If a carbon-free ash cannot be obtained even in this way, moisten the ash with a small amount of ethanol (95), break up the ash with a glass rod, wash the rod with a small amount of ethanol (95), evaporate carefully, and determine the mass of the total ash as described above. A desiccator (silica gel) is used for cooling.	constant mass, cool, weigh accurately, and determine the amount (\%) of total ash. If a carbonized substance remains and constant mass cannot be obtained in the abovementioned method, extract the charred mass with hot water, collect the insoluble residue on filter paper for assay, and incinerate the resi-due and filter paper until no carbonized substance remain in the ash. Then add the filtrate, evaporate it to dryness, and incinerate. Cool, weigh accurately, and determine the mass (\%) of the total ash. If a carbon-free ash cannot be obtained even in this way, moisten the ash with a small amount of ethanol (95), break up the ash with a glass rod, wash the rod with a small with a glass rod, wash the rod with a small amount of ethanol (95), evaporate carefully, and determine the mass of the total ash as described above. A desiccator (silica gel) is used for cooling.		otherwise directed in the monograph. Calculate the percentage of ash. Method 2: Heat a porcelain or platinum crucible to red heat for 30 minutes, allow to cool in a desiccator and weigh. Unless otherwise specified in the monograph, evenly distribute 1 g of the substance being examined in the crucible, dry at $100^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ for 1 hour and ignite to constant weight in a muffile furnace at $575^{\circ} \mathrm{C}$ to $625^{\circ} \mathrm{C}$. Allow the crucible to cool in a desiccator and weigh after each ignition. Flames should not be produced at any time during the procedure. If after prolonged ignition a carbon-free ash cannot be obtained, take up with hot water, filter through an ashless filter paper and ignite again the residue and the filter paper. Combine the filtrate with the ash, carefully evaporate to dryness and ignite to constant weight. Calculate the percentage of ash with reference to the air-dried drug.
	Acid-insoluble ash	Acid-insoluble ash	Determination of Ash (Acid-insoluble ash)	DETERMINATION OF ACID INSOLUBLE ASH
च	Add carefully 25 mL of dilute hydrochloric acid to the total ash, boil gently for 5 minutes, collect the insoluble matter on filter paper for assay, and wash thoroughly with hot water. Dry the residue together with the filter paper, and ignite to incinerate in a tared crucible of platinum, quartz or porcelain for 3 hours. Cool in a desiccator (silica gel), weigh, and determine the amount (\%) of acid-insoluble ash. When the amount determined exceeds the limit specified, incinerate repeatedly to constant mass.	Add carefully 25 mL of dilute hydrochloric acid to the total ash, boil gently for 5 minutes, collect the insoluble matter on filter paper for assay, and wash thoroughly with hot water. Dry the residue together with the filter paper, and ignite to incinerate in a tared crucible of platinum, quartz or porcelain for 3 hours. Cool in a desiccator (silica gel), weigh, and determine the amount (\%) of acid-insoluble ash. When the amount determined exceeds the limit specified, incinerate repeatedly to constant mass.	Place the obtained in the determination of total ash in crucible, add 10 ml of dilute hydrochloric acid with great care, cover with a watch glass, hot water and add the rinsings to the crucible, filter with an ashless filter paper, transfer the residue to the filter paper with water, wash till the filtrate yields no reactions of chlorides. Transfer the filter paper together with the residue to the original crucible, dry and ignite to constant weight. Calculate the percentage of acid-insoluble ash with reference to the air-dried drug.	Use method 1 unless otherwise directed in the monograph. Method 1: Boil the ash for 5 minutes with 25 ml of 2 M hydrochloric acid R, filter, collect the insoluble matter in a previously weighed sinteredglass crucible or on an ashless filter paper, wash with hot water and ignite. Calculate the percentage of acid-insoluble ash with reference to the air-dried drug. Method 2: Place the ash or the sulphated ash, as specified in the monograph, in a crucible, add 15 ml of water and 10 ml of hydrochloric acid R, cover with a watch glass, boil gently for 10 minutes and allow to cool. Wash the watch glass with 5 ml of hot water, collect the washings in the crucible. Collect the insoluble matter in a previously weighed sinteredglass funnel or on ashless filter paper, wash with hot water until the filtrate is neutral. Dry, ignite to dull redness, allow to cool in a desiccator and weigh. Repeat until the difference between tow successive weightings is not more than 1 mg . Calculate the percentage of acid-insoluble ash with reference to air-dried drug.
				DETERMINATION OF SULPHATED ASH
				Use method 1 unless otherwise directed in the monograph. Method 1: Heat a porcelain or platinum crucible to redness for 10 minutes, allow to cool in a desiccator and weigh. Unless otherwise specified in the monograph, place 1 g of the substance being examined in the crucible, moisten with sulphuric acid R , ignite gently, again moisten with sulphuric acid and ignite at about $800^{\circ} \mathrm{C}$. Cool, weigh again, ignite for 15 minutes and cool, weigh again. Repeat this procedure until tow successive weightings do not differ by more than $0.5 \mathbf{~ m g}$. If the residue is reserved for the test of heavy metals, ignition should be carried out at $500^{\circ} \mathrm{C}$ to $600^{\circ} \mathrm{C}$. Method 2: Heat a porcelain or platinum crucible to redness for 10 minutes, allow to cool in a desiccator and weigh. Place a suitable quantity of the substance being examined in the crucible, add 2 ml of 1 M sulphuric acid R and heat, first on a water bath, then cautiously over a flameand then progressively to about $600^{\circ} \mathrm{C}$. Continue incineration until all black particles have disappeared and then allow to cool. Add a few drops of 1 M sulphuric acid R , incinerate as before and allow to cool. Add a few drops of a $15.8 \% \mathrm{~m} / \mathrm{v}$ solution of ammonium carbonate R , evaporate to dryness. Incinerate carefully, allow to cool, weigh. Incinerate for 15 minutes and repeat this procedure to constant mass.
				DETERMINATION OF WATER-SOLUBLE ASH
				Boil the ash (Appends 7.6) for 5 minutes with 25 ml of water. Collect the insoluble matter in a previously weighed sintered-glass funnel or filter crucible or on an ashless filter paper, wash with hot water and ignite for 15 minutes at a temperature not exceeding $450^{\circ} \mathrm{C}$. Allow to cool in a desiccator and weigh to determine the quantity of water insoluble residue. The difference between the weight of ash add the weight of water-insoluble residue is the mass of water-soluble ash. Calculate the percentage of water-soluble ash with reference to the airdried drug.
	Extract content	Extract content	Determination of Extractives	DETERMINATION OF EXTRACTIVES IN HERBAL DRUGS
	The test for the extract content in crude is performed as directed in the following methods: (1) Dilute ethanol-soluble extract-Unless	The test for the extract content in crude is performed as directed in the following methods: (1) Dilute ethanol-soluble extract-Unless	1. Determination of Water-soluble Extractives Pulverize the material being examined, pass through No. 2 sieve, mix well. Cold maceration method Place 4 g of the powdered material,	Determination of water-soluble extractives Cold maceration method: Unless otherwise specified in the monograph, place about 4.000 g of the moderately coarse powdered

JP
otherwise specified, weigh accurately about 2.3
g of the sample for analysis, extract with 70 mL g of the sample for analysis, extract with
of dilute ethanol in a suitable flask with intermittent shaking for 5 hours, and allow to stand for 16 to 20 hours. Filter, and wash flask and residue with small portions of dilute ethan
until the filtrate measures 100 mL . Evaporate a 50 mL aliquot of filtrate to dryness, dry at $105^{\circ} \mathrm{C}$ Weigh accurately the amount, multiply it by 2 , and determine theamount of dilute ethanolsoluble extract. Calculate the extract content (\%)
with respect to the dried basis, obtained under the loss on drying. 2) Water-soluble extract-Proceed as directed 1), using water instead of dilute ethanol, weigh accurately the amount, multiply by 2, and Calculate the extract content (\%) with respect amount of the sample on the dried basis, obtained under the loss on drying. (3) Diethyl ether-soluble extract-Unless in a desiccator (silica gel) for 48 hours, weigh accurately about 2 g of it, and place in a suitab flask. Add 70 mL of diethyl ether, attach a reflux condenser to the flask, and boil gently on a flask and the residue with small portions of diethyl ether until the filtrate measures 100 mL Evaporate a 50 mL aliquot of the filtrate to dryness on a water bath, dry in a desiccator silica gel) for 24 hours, weigh accurately the of diethyl ether-soluble extract, and calculate the extract content (\%). Essential oil content The test of essential oil content in crude drugs is performed as directed in the following method: Essential oil determination: Weigh the quantity of test sample for analysis directed in the and agraph in a 1-L hard glass-stoppered flask drug. Set up apparatus for essential oil determination in the upper mouth of it, and heat the content of the flask in an oil bath between $130^{\circ} \mathrm{C}$ and $150^{\circ} \mathrm{C}$ to boiling. The graduated tube of the apparatus is to previ usly filled with is added to the graduated tube. Unless
otherwise specified, continue boiling for 5 hours, allow to stand for some time, and open the stopper of the apparatus. Draw off the wate
slowly until the surface of the oil layer corresponds to the preparation line, and allow or stand for than 1 hour at ordinary temperatur Then lower the surface of the oil layer to the zero line. and read the volume $(\mathrm{mL}$) of the oil
ordinary temperature. Subtract the volume (mL) of xylene from the volume of the total oil.

Extract content

otherwise specified, weigh accurately about 2.3 gof the sample for analysis, extract with intermittent shaking for 5 hours, and allow to stand for 16 to 20 hours. Filter, and wash flask and residue with small portions of dilute ethan until the filtrate measures 100 mL . Evaporate a 50 mL aliquot of filtrate to dryness, dry at $105^{\circ} \mathrm{C}$
for 4 hours, and cool in a desiccator (silica gel). Weigh accurately the amount, multiply it by 2 , and determine theamount of dilute ethanolsoluble extract. Calculate the extract content ($\%$)
with respect to the amount of the sample on th dried basis, obtained under the loss on drying. 2) Water-soluble extract-Proceed as directed in 1), using water instead of dilute ethanol, weigh accurately the amount, multiply by 2, and
determine the amount of water-soluble extra Calculate the extract content (\%) with respect to amount of the sample on the dried basis, obtained under the loss on drying. 3) Diethyl ether-soluble extract-Unles otherwise specified, dry the sample for analysi
in a desiccator (silica gel) for 48 hours, weigh accurately about 2 g of it, and place in a suita flask. Add 70 mL of diethyl ether, attach a reflux condenser to the flask, and boil gently on a
water bath for 4 hours. Cool, filter, and wash th water bath for 4 hours. Cool, filter, and wash the
flask and the residue with small portions of diethyl ether until the filtrate measures 100 mL . vaporate a 50 mL aliquot of the filtrate to ryness on a water bath, dry in a desiccator mount multiply it by 2 , determine the ampor of diethyl ether-soluble extract, and calculate he extract content (\%).
Essential oil content
The test of essential oil content in crude drugs is performed as directed in the following method:
Issential oil determination: Weigh the quantity monograph in a 1-L hard glass-stoppered flask and add from 5 to 10 times as much water as th drug. Set up apparatus for essential oil determination in the upper mouth of it, and hea $130^{\circ} \mathrm{C}$ and $150^{\circ} \mathrm{C}$ to boiling. The graduated tube of the apparatus is to be previously filled with is added to the graduated tube. Unless otherwise specified, continue boiling for 5 hours, allow to stand for some time, and open slowly until the surface of the Draw off the water corresponds to the preparation line, and allow o stand for than 1 hour at ordinary temperatur Then lower the surface of the oil layer to the
zero line. and read the volume (mL) of the oil a zero line. and read the volume (mL) of the oil at
ordinary temperature. Subtract the volume (mL) of xylene from the volume of the total oil.

CP
Determination of Extractives
accurately weight (to the nearest 0.01 g), in a $250 \sim 300 \mathrm{ml}$ stoppered conical flash, add accurately 100 ml of water, stopper well. Macerate th
drug with shaking rapidly through a dry filter, transfer accurately 20 ml of filtrate to an evaporating dish, previously dried to constant weight, and evaporate to dryness on a water bath. Dry at $150^{\circ} \mathrm{C}$ for 3 hours and allow to cool for 30 minutes in a desiccator. Weigh rapidly and accurately, unless water-soluble extractives on the dried basis (\%).
Hot extraction method: Place $2 \sim 4 \mathrm{~g}$ of the powdered material
ccurately weighted in a $100 \sim 250 \mathrm{ml}$ stoppered conical flask, add a accurately $50 \sim 100 \mathrm{ml}$ of water, stopper well and weigh, allow to stand lask, stopper well and weigh, add water to restore its original weight, shake well and filter through a dry filter. Place 25 ml of the filter, accurately, in an evaporating dish, previously dried to constant weigh, and evaporate to dryness on water bath. Dry at $105^{\circ} \mathrm{C}$ for 3 hours and nless specified otherwise in the monograph, calculate the percentag of water-soluble extractives on the dried basis (\%).
2. Determination of Ethanol-soluble Extractives
Proceed as directed under determination of water-soluble extractiv or mater bath), using he solvent instead of water
Determination of volatile ether extractives
lace $2-5 \mathrm{~g}$ of the powdered material (through No. 4 sieve), accurately eeighed, dry for 12 hours in a desiccator with $\mathrm{P}_{2} \mathrm{O}_{5}$. Place in a Soxhlet pecified otherwise in the monograph. Place in a evaporate to dryness. dry for 18 hours in a desiccator with $\mathrm{P}_{2} \mathrm{O}_{5}$, weigh accurately, heat to $105^{\circ} \mathrm{C}$ slowly, dry at $105^{\circ} \mathrm{C}$ to constant weight. The weight loss is the eight of volatile ether extractives.

Determination of Volatile Oi

The drug being examined should be pulverized to pass through No. 2 or
No. 3 sieves and then mixed well, unless otherwise specified. Method 1 This method is used for determining volatile oil of which the elative density is less than 1.0. Weigh accur equivalent to 0.5 quatile oil, into flask A. Add $300 \backsim 500 \mathrm{ml}$ of water and a few glass beads, shake and mix well. Connect flask A to volatile oil determinatio ube B and then connect B to reflux condenser C. Add water through verflows to flask A. Heat the flask gently in an electric heating jacket by other suitable means until boiling begins-continue heating for abou 5 hours, until the volume of oil does not increase. Stop heating, allow un off the water layer slowly until the oil layer is 5 mm above the zero mark. Allow to stand for at least 1 hours, open the stopcock
gain, run off the remaining water layer carefully until the oily layer is ust on the zero mark. Read the volume of oil in the graduated portion ercentage $(\mathrm{m} / \mathrm{g})$.
Method 2 This method is used for determination volatile oils of which he relative density is more than 1.0 . Transfer 300 ml of water and a fe assembly B. Add water through the top of Buntil the graduated measuring tube of B is filled and water overflows to flask A. Add 1 ml xylene with pipette andthen connect the reflux condenser \mathbf{C} to \mathbf{B}. Heat will keep the middle part of the condenser cold. Stop heating after 30 minutes, allow to stand for at least 15 minutes. Read the volume of xylene in the graduate portion of the tube. Carry out the procedure escribed under Method I. Beginning at the words "Weigh accurately to volume of the oil layer, Subtract the volume of xylene previously from he volume of the oil layer, the remainder is taken to the content of volatile oil in the drug being examined, expressed as percentage (m / g)

DETERMINATION OF EXTRACTIVES IN HERBAL DRUGS
material, accurately weighed, in a $250-300 \mathrm{ml}$ stoppered conical flask. occasionally shaking for 6 hours, che loll, allow to macerate cold occasionally shaking for 6 hours, then allow. to stand fro 18 hours. Filter
hrough a dry filter into a suitable dry flask. Pipette 20 ml of the filtrate oo a glass beaker, previously dried to constant mass, and evaporate to dryness in a water bath. Dry the residue at $105^{\circ} \mathrm{C}$ for 3 hours and allow o cool for 30 minutes in a desiccator, weigh rapidly to determine the mass of the residue, calculate the percentage or
Hot extraction method: Unless otherwise specified in the monograph, place about 2.000 g to 4.000 g of the moderately coarse powdered
material, accurately weighed, in a 100 ml or 250 ml close conical flas Add accurately 50.0 or 100.0 ml of water, or 25 well and conical flask Add accurately 50.0 or 100.0 ml or water, close well and weigh, allow to
stand for 1 hour, then heat under a reflux condenser in a water bath for hour, allow to cool, take off the flask, closes well and weigh, add water orestore its original mass, filter though a dry filter into a suitable dry ask. Pipette 25 ml of the filtrate to a glass beaker, previously dried to residue a $105^{\circ} \mathrm{C}$ for 3 hours and allow to cool for 30 minutes in a desiccator, weigh rapidly to determine the mass of the residue, calculate the percentage of water-solbule extractives with reference to the air-dried drug.
etrmination of alcohol-solble extractives
using ethanol or methanol of strength in of water-soluble extractives, monograph as extraction solvent instead of water.

DETERMINATION OF VOLATILE OIL IN DRUGS

The determination of volatile oil in drugs is carried out by steam distillation in the apparatus described in the Fig 9.2. The distillate is phase is automatically recalculated into the distillation flask. The volume of volatile oil may be measured directly on the graduated tube or xylene may be used to take up the volatile oil to the graduated part o he tube (for the volatile oils the relative density of which is more than .0), and then total volume volthe oil is expressed as a percentage v / m. Determination of the volatile oils the relative density of which is less than 1.0. Weigh accurately the nearest 0.01 g , a quantity of the ubstance being examined passed through sieve No. 2000 equivalent to vater and a few pieces of porous earthenware. Connect the distillat wask to the still head A of the apparatus. Add water through the funne N until it is at the level B . Heat the flask until ebullition begins and
adjust the distillation rate 2 to 3 ml per minute unless otherwise adjust the distillation rate 2 to 3 ml per minute unless otherwise
prescribed. Determine the rate of distillation by lowering the level distillation liquid by means of the three-way tap M until the meniscus is devel with the lower mark I, J, closing the tap M and simultaneously tarting a stop watch. Whe ter 1 watch and note the time. Open the tap M and continue the distillation for stops to increase. Stop heating and after at least 10 minutes read the volume of the oil collector in the graduated tube.
Determination of the volatile oils the relative density of which is more
than 1.0. Connect the distillation flask containing about $300-500 \mathrm{ml}$ water and a far small pieces of porous earthenware, to the still head A of the apparatus. Add water though the funnel N untie it is at the level B . ntroduce 1 ml of xylene R at K by means of a pipette (the tip of which is
inserted the lower part of orifice K). Heat the flask until ebullition begins and adjust the distillation rate as the way described under the method or determination of the volatile oils relative density of which is less than 1.0. After 30 minutes discontinue heating and after at least a 10 minutes read the volume of xylene R collected in the graduated tube
introduce the specified quantity of drug passed the through

JP	KP	CP	VP
Essential oil content	Essential oil content	Determination of Volatile Oil	DETERMINATION OF VOLATILE OIL IN DRUGS
			sieve equivalent to $0.5-1.0 \mathrm{ml}$ of volatile oil into the distillation flask. Carry out the distillation at the distillation rate from 2 to 3 ml per minute for 5 hours, unless otherwise prescribed, until the volume of the volatile oil stops to increase. Stop heating and after at least 10 minutes read the volume of the mixture of xylene R and volatile oil. Subtract the volume of xylene \mathbf{R} previously observed from the volume of the oily layer. The difference in volume and the quantity of drug are taken to be the content of volatile oil in the drug being examined.
Microscopic examination	Microscopic examination	Microscopical Identification for Crude Drugs and Patent Medicines	MICROSCOPICAL IDENTIFICATION FOR CRUDE DRUGS AND PATENT MEDICINES
(1) Apparatus Use an optical microscope with objective of 10 and 40 magnifications, and an ocular of 10 magnifications. (2) Preparation for microscopic examination (i) Section: To a section an a slide glass add 1 to 2 drops of a mounting agent, and put a cover glass in it, taking precaution against inclusion of bubbles. Usually use a section $\mathbf{1 0}$ to $\mathbf{2 0 ~ m m}$ in thickness. (ii) Powder: Place about 0.1 g of powdered sample in a watch glass containing 2 to 3 drops of a swelling agent, stir well with a small rod preventing inclusion of bubbles, and allow to stand for more than 10 minutes to swell the sample. Smear, using a small glass rod, the slide glass with a small amount of the swollen sample, add 1 drop of the mounting agent, and put a cover glass on it so that the tissue sections spread evenly without overlapping each other, taking precaution against inclusion of bubbles. Unless otherwise specified, use a mixture of glycerin and water (1:1) as mounting agent and swelling agent. (3) Observation of components in the description In each monograph, description is usually given of the outer portion and the inner portion of section in this order, followed by a specification of cell contents. Observation should be made in the same order. In the case of a powdered sample, description is qiven of a	(1) Apparatus Use an optical microscope with objective of 10 and 40 magnifications, and an ocular of 10 magnifications. (2) Preparation for microscopic examination (i) Section: To a section an a slide glass add 1 to 2 drops of a mounting agent, and put a cover glass in it, taking precaution against inclusion of bubbles. Usually use a section $\mathbf{1 0}$ to $\mathbf{2 0} \mathbf{~ m m}$ in thickness. (ii) Powder: Place about 0.1 g of powdered sample in a watch glass containing 2 to 3 drops of a swelling agent, stir well with a small rod preventing inclusion of bubbles, and allow to stand for more than 10 minutes to swell the sample. Smear, using a small glass rod, the slide glass with a small amount of the swollen sample, add 1 drop of the mounting agent, and put a cover glass on it so that the tissue sections spread evenly without overlapping each other, taking precaution against inclusion of bubbles. Unless otherwise specified, use a mixture of glycerin and water (1:1) as mounting agent and swelling agent. (3) Observation of components in the description In each monograph, description is usually given of the outer portion and the inner portion of section in this order, followed by a specification of cell contents. Observation should be made in the same order. In the case of a powdered sample, description is given of a	Microscopical identification is method with the application of the microscope to identify the characters of tissues, cells or cell contents in sections, powders disintegrated tissues or surface slides of crude drugs and patent medicines. Representative to meet the requirements of identifications for each drugs. The slides of patent medicines are made after appropriate treatment with reference to their different dosage forms. 1. Microscopical slides of crude drugs (1) Transverse or Longitudinal Sections Select the observed part of the drug, cut into sections of $\mathbf{1 0 - 2 0 ~ m m}$ in thickness with a razor blade or using sliding microtome after softened. Material may be embedded in hard paraffin before cutting if necessary. Select a flat section on the glass slide, according to different phenomena, treate with glycerol-acetic acid TS, choral hydrate TS or other test solutions 1-2 drops, and cover the cover glass. If necessary, after treat chloral hydrate TS, heat until it is transparent, and then treat with glycerol-ethanol TS or diluent glycerol, cover the cover glass. (2) Slides of Powder Spread a small quantify of the powder, through a seive No. 4, on a slide, and examine after treated with glycerol-acetic acid TS, chloral hydrate TS, or other suitable test solutions, cover the cover glass. (3) Slides of Surface After moistening and softening the materials, cut two parts of about 4 mm^{2} of the observed part, place on the glass slide (one for the obverse, the other for the opposite) or tear its epidermis, add suitable test solutions or heat until it is transparent, cover the cover glass. (4) Slides of Disintegrated Tissue The material should be cut into small strips of about 5 mm in length, 2 mm in diameter or pieces of about 1 mm thick before being disintegrated. Potassium hydroxide method can be used parenchyma	Microscopical identification is a method using a microscope to identify the characters of tissues, cells or cell contents in sections, powders, disintegrated tissues or surface slides of crude drugs and patent medicines. Representative samples are chosen to be identified and slides are prepared to meet the requirements of identification for each drug. The slide of patent medicines are after appropriate treatment with reference ton their different dosage forms. Transverse of longitudinal sections Select a suitable oar of the drug having enough required botanical characteristics as specified below: Stems and small roots: Take a piece with a full sartorial trance verse section. Stems, big roots: Take a piece with a spectral transverse section (showing from the epidermis to the centre). Stem bark: Take a piece with a rectangular transverse section (showing from cork to xylem). Leaves: Take a piece with central vein and part of the lobes on both of its side. Flowers: Take the epiderma or cut transversely every part of the flower. Small fruits and seeds: Take the whole fruit or seed. Big fruits and seeds: Take a part of fruit or seed so that a section of which shows all botanical characteristics. Cut into thin sections with razor bale or using sliding microtome after being softened. Material may be embedded in herd paraffin before cutting if necessary. The section is examined immediately under a microscope unless otherwise specified or after being treated by the following ways: Macerate the section in 5% solution of chloramines TR until it is white, thoroughly wash with water. Macerate the section in a 1% solution of acetic acid R for 2 minutes, thoroughly wash with water. Macerate the section in green iod solution \mathbf{R} or methylene blue for 1-5 s,
characteristic component or a matter present in large amount, rarely existing matter, and cell contents in this order. Observation should be made in the same order.	characteristic component or a matter present in large amount, rarely existing matter, and cell contents in this order. Observation should be made in the same order.	makes most part of the material or the material with few or scattered woody tissues; chromic-nitric acids method or potassium chlorate method can be used if the material is hard, with the presence of more woody tissues or the woody grouped to lager bundles. (1) Potassium Hydroxide Method (2) Chromic-Nitric Acids Method (3) Potassium Chlorate Method (5) Slides of Pollen and Spore Grind Pollens, anthers (or small flowers) or sori (soften the dry material inglacial acetic acid) with a glass rod and filter into a centrifugal tube, centrifuge. To the precipitate add $1-3 \mathrm{ml}$ of a freshly prepared mixture of acetic anhydride-sulfuric acid (9:1), heat on a water bath for 2-3 minutes, centrifuge. Wash the precipitate with water twice, place a little on the glass slide, treat with choral hydrate TS, cover the cover glass, or add 1-2 drops of 50% glycerin and 1% phenol, mount in fuchsinglycerin gelatin. 2. Microscopical slides of preparations including drugs powder 3. Identification of cell wall (1) Lignified cell wall (2) Suberized or Cuticutarized Cell Wall (3) Cellulose Cell Wall (4) Siliceous Cell Wall 4. Identification of Cell Content (1) Starch (2) Aleurone (3) Fatty oil, Volatile Oil or Resin (4) Inulin (5) Mucilage (6) Calcium Oxalte Crystals (7) Calcium Carbonate (stalactile) (8) Silicum 5. Microscopical measure It refers to measure the size of cells and cell contents in the microscope	quickly wash with ethanol (60%) R then with water. Macerate the section in carmine 40 solution \mathbf{R} untiol it is coloured, wash with water. Slides of powder Spread a small quantity of the powder on a slide, and examine under a microscope after being treated with either water, glycerol, chloral hydrate R, or other suitable test solutions. Slide of surface After moistening and softening the materials (when necessary) out a part or tear its epidermis, add suitable test solutions and examine. Slide of disintegrated tissue Potassium hydroxide method can be used if parenchyma makes most part of the material or the material with a few or scattered woody tissues; chromic-nitric acids method or potassium chlorate method can be used if the material is hard, with the presence of more woody tissues or the woody tissues propped into larger bundles. The material should be cut into small strips or pieces of about 2 mm wide or thick before being disintegrated. a. Potassium hydroside method b. Chromic-nitric acids method c. Potassium chlorate method Pollen and spore slides Grind pollens, anthers, small flowers or sore (soften the dry material in glacial acetic acid R) with a glass rod and filter into a centrifugal tube, centrifuge. To the precipitate add $1-3 \mathrm{ml}$ of a freshly prepared mixture of acetic anhydride-sulfuric acid (9:1), heat on a water bath for 2-3 minutes, centrifuge. Wash the precipitate with water twice, add 3-4 drops of glycerine gelatine and examine. Chloral hydrate R may also be used as mount ant for the examination. Measurements of cells and cell contents To measure the sizes of cells and cell contents, etc, under the microscope, ocular micrometer can be used. Place the ocular micrometer in an eyepiece first, then calibrate with a stage micrometer. For the calibration, turn the eyepiece and move the stage micrometer to make the divisions on the two scales parallel and their left " 0 " lines

Microscopic examination	Microscopic examination	Microscopical Identification for Crude Drugs and Patent Medicines
		with ocular micrometer. (1) Ocular micrometer (2) Stage micrometer

COPICAL IDENTIFICATION FOR CRUDE DRUGS AND PATENT MEDICINES
coincide, then look for another coincident lines to the right.
and cell contents
basis of divisions of ocular micrometer division can be calculated on the ines. To measure the object micrometer scales between the coinciden ivisions of ocular micromet, multiply the number of object-measuring rally, it is carried out under a high power objective, but a low ower objective would be more convenient to measure the length of minimal values ($\mu \mathrm{m}$), permitting a few numerical values slightly highe r lower than the values specified in pharmacopoeial requirement
Detection of cell w
Suberized or Cuticutarized cell wall
Cellulose cell wall
Siliceous cell Wall
Detection of cell contents
Starch
Fatty oil, volatile oil or resin
Fatty
Inulin
Calcium oxalate crystals
Calcium carbonate
Silicum
ssoluble in sulphuric acid
dentify the patent medicines made from pulverized drugs, slides for powders are prepared according to the method for powder slides to fine powder, to a small quantity of the sample add drop wise the equired test solutions, stair thoroughly to separate the stuck cells and lides of honeyed out the identification method for powder characters, ample, or deyed pills can be prepared directly by picking a little

LIMIT TESTS FOR IMPURITIES (ARSENIC

Use Method A unless otherwise directed in the monograp
Method A
The Appar
The Apparatus consists of a 100 ml conical flask closed with groundand 5 mm in internal diameter. The lower part of the tube is drawn to an in internal diameter of 1 mm .
5 mm from its tip there is a lateral orifice 2 to 3 mm in diameter. When he tube is in position in the stopper the lateral orifice should be at least
mm below the lower surface of the stopper. The upper end of the has a perfectly flat, ground surface at right angles to the axis of the ube. A second glass tube of the same internal diameter and 30 mm ong, with a similar flat ground surface, is placed in contact with the firs and held in position by two spiral springs
otton R. Int the the flat surfaces of 50 to 60 mg of lead acetate quare of mercury (II) bromide paper R 2 tubes place a disc or a smal of the tube, hold the 2 tubes in position by two spiral springs. In the conical flask dissolve or dilute the prescribed quantity of the substance being examined n sufficient water to produce 25 ml . Add 15 ml of hydrochloric acid R, 0.1 ml of tin (II) chloride solution As TR and 5 ml of 20% solution of potassium iodide R. Allow to stand for 15 minutes and ade apparas and immerse the flask in a water bath the temperature such that a uniform evolution of gas is maintained.
Prepare a standard at the same time and in the same manner using 1 ml of arsenic standard solution (1 ppm As) in place of the substance being examined and diluted to 25 ml with water. After not less than 2 hours stain produced on the paper of the test flask is not more intense than Mat of the standard.
Add the prescribed quantity of the substance being examined to a test Add the prescribed quantity of the substain 4 ml of hydrochloric acid R and about 5 mg of potassium iodide \mathbf{R} and add 3 ml of hydrophosphite solution R . Heat the mixture on a water bath for 15 minutes, shaking occasionally. Prepare a tandard ars solution (1 ppm As) in pard the substance being

Weigh the amount of the sample directed in the
monograph. and place it in a crucibleof platinum, quartz or porcelain. Add 10 mL of solution of magnesium nitrate hexahydrate in
ethanol (95)(1 in 10), burn the ethanol, heat etradually, and ignite to incinerate. If carbonize material still remains by this procedure, moist with a small quantity of nitric acid, and ignite again to incinerate in the same manner. After cooling, add 3 mL of hydrochloric acid, heat on
a water bath to dissolve the residue, and designate it as the test solution.
(5) Method 5

Weigh the amount of the sample directed in the monograph, add 10 mL of N,N-dimethylformamide, dissolve by heating if necessary, and
designate the solution as the test solution. Heavy Metals Limit Test The Heavy Metals Limit Test is a limit test of the quantity of heavy metals contained as impui
in drugs. The heavy metals are the metallic inclusions that are darkened with sodium sulfide
TS in acidic solution, as their quantity is expressed in terms of the quantity of lead (Pb) In each monograph, the permissible limit for heavy metals (as Pb) is described in terms of pm in parentheses.
est solutions and control solutions
Unless otherwise specified, test solution and control solution are prepared as directed in the
following: following: 1
monographount of the sample, directed in the to make 40 mL . Add 2 mL of dilute acetic acid and water to make 50 mL , and designate it as the test solution. The control solution is
prepared by placing the volume of Standara Lead Solution directed in the monograph in a
Nessler tube, and adding 2 mL of dilute acetic acid and water to make 50 mL .
(2) Method 2

Place an amount of the sample, directed in the monograph, in a quartz or porcelain crucible, ignition. After cooling, add 2 mL of nitric acid and 5 drops of sulfuric acid, heat cautiously until white fumes are no longer evolved, and incinerate by ignition between $500^{\circ} \mathrm{C}$ and $600^{\circ} \mathrm{C}$ to dryness on a water bath, moisten the residue with 3 drops of hydrochloric acid, add 10 mL of
hot water, and warn for 2 minutes. Then add 1 hot water, and warn for 2 minutes. Then add 1
drop if phenolphthalein TS, add ammonia TS dropwise until the solution develops a pale red color, add 2 mL of dilute acetic acid, witer.
necessary, and wash with 10 mL of water. Transfer the filtrate and washing to a Nessler ube, and add water as the test solution. The control solution is prepared as follows:
Evaporate a mixture of 2 mL of nitric acid, 5 drops of sulfuric acid and 2 mL of hydrochloric acid on a water bath, further evaporate to
dryness on a sand bath, and moisten the dryness on a sand bath, and moisten the
residue with 3 drops of hydrochloric acid. Hereinafter, proceed as directed in the test solution, then add the volume of Standard Lead
Solution directed in the make 50 mL .
Place an amount of the sample, directed in the
4) Method 4

Weigh the amount of the sample directed in the monograph. and place it in a crucible of solution, of magrz or posium nitrate hexahydrate in thanol ($1 \rightarrow 10$), burn the ethanol, heat graduall e to incinerate. If carbonized material still remains by this procedure, moiste
small quantity of nitric acid, and ignite again to incinerate in the same manner. After cooling, add 3 mL of hydrochloric acid, heat on
a water bath to dissolve the residue, and designate it as the test solution.
(5) Method 5

Weigh the amount of the sample directed in the monograph, add 10 mL of N, N-dimethylform-
mide, dissolve by heating if necessary, and amide, dissolve by heating if necessary, and
designate the solution as the test solution.
Heavy Metals Limit Test
The Heavy Metals Limit Test is a limit test of the quantity of heavy metals contained as impur nclusions that are darkened with sodium sulfic expressed in terms of the quantity of lead (Pb). In each monograph, the permissible limit for heavy metals (as Pb) is described in terms of
Preparation of test solutions and control solutions
Unless otherwise specified, test solution and following: solion are prepared as directed in the following:
(1) Method 1
hone an amount of the sample, directed in the monograph, in Nessler sabe. Dissolve in water and water to make 50 mL and designate acid the test solution. The control solution is prepared by placing the volume of Standard Lead Solution directed in the monograph in a
Nessler tube, and adding 2 mL of dilute acetic acid and water to make 50 mL .
aci) Method 2
Place an amount of the sample, directed in the monograph, in a quartz or porcelain crucible, gnition. After cooling, add 2 mL of nitric acid and 5 drops of sulfuric acid, heat cautiously until white fumes are no longer evolved, and
incinerate by ignition between $500^{\circ} \mathrm{C}$ and $600^{\circ} \mathrm{C}$ Cool, add 2 mL of hydrochloric acid, evaporate oo dryness on a water bath, moisten the residu
with 3 drops of hydrochloric acid, add 10 mL of hot water, and warn for 2 minutes. Then add 1 drop if phenolphthalein TS, add ammonia TS
dropwise until the solution develops a pale red color, add 2 mL of dilute acetic acid, filter if ecessary, and wash with 10 mL of water.
Transfer the filtrate and washing to a Nessler tube, and add water to make 50 mL . Designate
as the test solution. The control solution
The control solution is prepared as follows:
Eaporate a mixture of 2 mL of nitric acid, 5 drops of sulfuric acid and 2 mL of hydrochloric dryness on a sand bath, and moisten the residue with 3 drops of hydrochloric acid. Hereinafter, proceed as directed in the test solution, then add the volume of Standard Lead
Solution directed in the mone make 50 mL . (3) Method

Place an amount of the sample, directed in the

Limit Test for Arsenic

o flask A, accurately measured, add 5 ml of hydrochloric acid and 21 m tannous chloride TS, allow to stand at room temperature for 10 minutes and add 2 g of zinc granules. Connect conduit C into flask A immediately, and allow the evolved arsine to enter tube D. Immerse th hloroform to the graduation, mix well.
Procedure
Transfer the test preparation prepared as described under individua monographs to flask A and proceed as described under standard arsenic reference solution beginning with the words "Then add 5 ml o
potassium iodide TS ...". Compare the above two solution against a white background. Any colour produced by the preparation is not more intense than produced by the standard arsenic reference solution. If necessary, determine the absorbance at the wavelength of 510 nm , with suitable spectrophoto-meter or colorimeter, using silver

Limit Test for Heavy Metals
The Term "heavy metals" refers to those metals that react with olouredamide or sompound.
Method
nnless otherwise specified, use two 25 ml Nessler cylinders. To cylinde BS (pH 3.5). dilute with water or other solvent as specified under ndividual monographs to 25 ml . To cylinder B add 25 ml of the test

as specified under individual monographs

If the original test preparation is coloured, its colour can be matched by
the addition of a few drops of dilute caramel solution or other suitable solution to cylinder A. To each cylinder add 2 ml of thioacetamide TS by viewing down the vertical axis of the cylinder against a white background. The colour produced in cylinder B is not more intense th hat produced in cylinder A. If the colour cannot be matched by the ing of cole under individual monographs to produce 30 ml of test preparation. ivide the test preparation into two equal portions
and transfer to Nessler cylinder A and B. To cylinder B add sufficient produce 25 ml . To cylinder A add 2 ml of thioacetamide TS , mix well in porosity. To cylinder \mathbf{A} add the prescribed volume of lead standard solution and dilute with water of other solvent as specified under dividual monographs to produce 25 ml . Then add 2 ml of
俍 hioacetamide TS to cylinder B and 2 ml of water to cylinder A and xamined contains a ferric salt which interferes the test, $0.5-1.0 \mathrm{~g}$ of ascorbic acid should be added to each cylinder. Unless otherwise specified, evaporate the same quantity of the same reagents to dryness 2.5) and 15 ml dish. Dissolve the residue in 2 ml of acetate buffer (pH the specified quantity of lead standard solution and water to 25 ml . The solution is used as reference solution for the test solution which is prepared by using mor hor with other regents.
Method 2
Unless otherwise specified, use the residue obtained from the Determination of residue on Ignition, add 0.5 ml of nitric acid, evaporat to dryness, heat until nitrous oxide fumes are no longer evolved (or crucible until thoroughly charred, cool, moisten the residue with 0.5 1.0 ml of sulfuric acid, ignite at a low temperature until sulfurous acid mes are no longer evolved, add 0.5 ml of nitric acid, evaporate to at $500-600^{\circ} \mathrm{C}$ until the incineration is complete). Cool, add 2 ml of hydrochloric acidevaporate to dryness on a water bath, add 15 ml o water, followed by ammonia TS dropwise until the solution is neutral to
phenoloththe phenolphthalein IS, then add 2 ml of acetate BS (pH 3.5) and warm to
effect dissolution
Transfer the resulting solution to Nessler cylinder B, dilute with water 25 ml and produced as described under method I . The reference
xamined. Compare the colour produced in the test solution with that in
he standard solution. Any colour produced in the test solution is not more intese than that obtained in the standard solution.

he

f
都

LIMIT TESTS FOR IMPURITIES (HEAVY METALS

Use one of the following methods as prescribed in the monograph.
To 12 ml of the prescribed solution in a tube, add 2 ml of acetate buffer OH 3.5 and mix. Add 1.2 ml of thioacetamide solution R, mix immediately and allow to stand for 2 minutes. Prepare a standard solution in the
same manner using a mixture of 10 ml of either lead standard solution 1 ppm Pb) or lead standard solution (2 ppm Pb), as prescribed, and 2 of the solution being examined. Compare the colour produced in the est solution with that in the standard solution.
hat obtained in the standard solution. The standard more intense than slightly brown colour when compared to a blank solution prexibed by raeting in the same manner a mixture of 10 ml water and 2 ml of the solution being examined.
Disolve the specified quantity of the substance being examined in an rganic solvent containing a minimum percentage of water, such as 1 , 4-dioxan R or acetone R containing 15% of water. Carry out Method 1 sol prepare the lead standard solution by diluting lead standard
spm to contain 1 or 2 ppm of Pb , as specified.
Method 3
Place the prescribed quantity (usually not more than 2 g) of the
substance being examined in a silica crucible. Add 4 ml of a 25% olution of magesium sulphate in 2 N sulphuric acid A fine glass rod and heat cautiously. If the mixture is liquid, evaporate gently to dryness on a water bath. Progressively heat to ignition, not allowing the temperature to exceed $800^{\circ} \mathrm{C}$, and continue heating until a esidue with 0.2 ml of 2 N sulphuric acid R , evaporate, ignition again and allow to cool. The total period of ignition must not exceed 2 hours. Dissolve the residue using two 5 ml quantities of 2 N hydrochloric acid R. Add 0.1 ml of phenolphthalein solution I and concentrated ammonia
solution \mathbf{R} dropwise until a pink colour is produced Cool, add glacial acetic acid R until the solution is decolorized and add a further 0.5 ml . Filter if necessary and dilute the solution to 20 ml with water. To 12 ml of the resulting solution in a tube, add 2 ml of acetate buffer pH 3.5 an mix. Add to 1.2 ml of thioacetamide solution R, mix immediately and
allow to stand for 2 minutes. Compare the colour produced in the test allow to stand for 2 minutes. Compare the colour produced in the test
solution with that in a standard solution prepared simultaneously in the same manner. Any colour producedin the test solution is not more intensethan that obtained in the standard solution
cribed quantity of the substance being of magnesium oxide R in a silica crucible. Ignite to dull red heat until a omogeneous white or greyish white mass is produced. If after 30 minutes of ignition the mixture remains coloured, allow to cool, mix with peration. Finally heat at $800^{\circ} \mathrm{C}$ for about 1 hour. Dissolve the residue using two 5 ml quantities of 5 N hydrochloric acid solution R and carry out the procedure described under Method 3 beginning at the word
"Add 0.1 ml of phenolphthalein solution $1 . .$. . To prepare the standard Add .1 ml of phenoiphthiein solution $1 \ldots .$. . To prepare the standard
solution place the prescribed volume of lead standard solution (10 ppm Pb) in a silica crucible, add 0.5 g of magnesium oxide R and mix. Dry the mixture in an oven at $100^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$, ignite as described above.
preparation should be prepared as follows. Place the same quantify of
the same regents used for the preparation of test solution in a porcelain the same regents used for the preparation of test solution in a porcc
dish and evaporate to dryness, heat gently and dissolve in 2 ml of acetate BS (PH 3.5) and 15 ml of water, transfer to the Nessler cylind and add the specified volume of standard lead solution, dilute with water to 25 ml .
Unless otherwise specified, dissolve a quantity of the substance being examined in 5 ml if sodium hydroxide TS and 20 ml of water. Transfer the solution to a Nessler cylinder, add 5 drops of sodium sulphide TS and mix well the colour produced is not more intense than of a solution and treated in the same manner.
Method 4
Apparatus The filter holder is compared of tightly sealed upper and lower parts with screw thread, washer, filter A it he upper cap part pf the filter holder the entrance may be fitted with a 50 ml syringe; B is
joint : C is washer (external diameter is 10 mm , internal diameter is 6 mm) : D is filter membrane with 10 mm in diameter and 3.0 mm of orositv. soaked in water for more than 24 hours before use: E is auxiliary filter plate made of No. 3 sintered glass filter plate with 10 mm in diameter and 1 mm in wickness; F is the lower p.
Lead standard stain Measure accurately a quantity of lead standard solution to a small beaker, dilute to 10 ml with water or other solvent as
and 1.0 ml of thioacetamide TS , mix well, allow to stand for 10 minutes. Transfer to a filter holder with a 50 ml syringe and filter it on applying an even pressure (filter rate is about 1 ml per minute), then place the filter even pressure (filter rate is about 1 mi per mint.
membrane on a piece of filter paper and dry it.

Procedure

Transfer 10 ml of the test preparation prepared as described under individual monographs and proceed as described under Lead standard stain, beginning with the words "add 2 ml of acetate BS (pH 3.5)". Any stain produced is not more intense than the standard stain. If the test preparation is coloured or turbid, filter membrane is contaminated, filter membrane remains uncontaminated. Proceed as described under Lead standard stain, beginning at the words "add 2 ml of acetate BS (pH $3.5)$ ", using 10 ml of filtrate, and compare the stain as described above.

LIMIT TESTS FOR IMPURITIES (HEAVY METALS)
Dissolve the residue using two 5 ml quantitites of 5 N hydrochloric acid
solution R and carry out the procedure described under Method 3 from solution R and carry out the procedure described under Method 3 from
the substance "Add 0.1 ml of phenolphthalein solution I..." and use a mixture of 10 ml of the above treated lead standard solution and 2 ml of he test solution.
Use a membrane filter holder, the dimensions of which are shown in Use a membrane filter holder, the dimensions of which are shown in
Figure, fitted with a 50 ml syringe. The membrane filter disk (C) is made of a suitable material with a nominal pore diameter of $3 \mu \mathrm{~m}$ and protectedby a prefilter (B) that is made of borosilicate glass wire.
Dissolve the prescribed quantity of the substance being examined in Dissolve the prescribed quantity of the substance being examined in 30 Il of water unless otherwise specified in the monograph. Filter the
solution applying an even pressure. Dismantle the holder and check that the membrane filter remains uncontaminated; if necessary replace the membrane filter and repeat the filtration. To the whole filtrate, or the prescribed volume of the filtrate, add 2 ml of acetate buffer pH 3.5 and minutes. Invert the order of the filters, and filter slow and even pressure. Remove the membrane filter is not move itense than that obtained bv standard which is treated usina the
prescribed volume of lead standard solution (1 ppm Pb) in the same
manner from the sentence "Add 2 ml of acetate buffer pH 3.5 ...".

Place an amount of the sample, directed in the monograph, in a platinum or porcelain crucible,
mix with 10 mL of a solution of magnesium nitrate hexahydrate in ethanol (95) (1 in 10), fire the ethanol to burn, and carbonize by gradual carefully, and incinerate of suifuition between $500^{\circ} \mathrm{C}$ and $600^{\circ} \mathrm{C}$. If a carbonized substance remains, moisten with a small amount of sulfur acid, asd incinerate by ignition. Cool, diss
the residue in 3 mL of hydrochloric acid,
evaporate on a water bath to dryness, wet the
residue with 3 drops of hydrochloric acid, add residue with 3 drops of hydrochloric acid, add
10 mL of water, and dissolve by warming. Add drop of phenolphthalein TS, add ammonia dropwise until a pale red color filter if necessary wash with 10 mL of water, transfer the filtrate make 50 mL , and use this solution as the test monoaraph
solution. The control solution is prepared as follows: Take 10 mL of a solution of
magnesium nitrate hexahydrate in ethanol (95) 1 mL of sulfuric acid, heat carefully, and ignite between $500^{\circ} \mathrm{C}$ and $600^{\circ} \mathrm{C}$. Cool, and add 3 mL of hydrochloric acid. Hereinafter, proceed as
directed in the test solution, then add the directed in the test solution, then add the the monograph and water to make 50 mL . (5) Method 5

Unless otherwise specified, in the monograph, place 0.3 g of extract or 1.0 g of fluidextract in
platinum or porcelain crucible, evaporate to dryness on a water bath, incinerate by ignition between $500^{\circ} \mathrm{C}$ and $600^{\circ} \mathrm{C}$. Cool, dissolve the residue in 3 mL of hydrochloric acid by water two times. Transfer the filtrate and washings to a Nessler tube, add 1 drop of phenolphthalein TS, add ammonia TS dropwise until a pale red color develops, then add 2 mL o dilute acetic acid, and add water to make 50 m
Designate it as the test solution. The control solution is prepared as follows: add 3 mL of hydrochloric acid. Hereinafter, proceed as directed in the test solution, then add 3.0 mL of
Standard Lead Solution and water to make 50 Standa
mL.

in

\square
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
monograph, in quartz or porcelain crucible, heat
cautiously, gently at first, and then increase the heat until incineration is completed. After cooling, add 1 mL of aqua regia, evaporate to
dryness on a water bath, moisten the residue with 3 drops of hydrochloric acid, add 10 mL o of phenolphthalein TS, add ammonia TS
dropwise until the solution develops a pale red necessary, wash with 10 mL of water trans the filtrate and washings to a Nessler tube, and
add water to make 50 mL . Designate it as the test solution. The control solution is prepared ollows:
Evaporate 1 mL of aqua regia to dryness on a water bast solution, and add the volume of he test solution, and add the volume Standard Lead Solution directed in the
monoaraph and water to make 50 mL .
Pace an amount of the sample, directed in the monograph, in a platinum or porcelain crucible
mix with 10 mL of a solution of magnesium nitrate hexahydrate in ethanol (95) (1 in 10), fire
the ethanol to burn, and carbonize by gradual heating. Cool, add 1 mL of sulfuric acid, heat carefully, and incinerate by ignition between 0 C and $600^{\circ} \mathrm{C}$. If a carbonized substance acid, and incinerate by ignition Cool, dissolve he residue in 3 mL of hydrochloric acid, evaporate on a water bath to dryness, wet the
residue with 3 drops of hydrochloric acid, add drop of phenolphthalein TS, add ammonia TS add 2 mL of dilute acetic acid, filter if necessa wash with 10 mL of water, transfer the filtrate make 50 mL , and use this solution as the test solution. The control solution is prep
follows: Take 10 mL of a solution of
magnesium nitrate hexahydrate in ethanol (95) 1 mL of sulfuric acid, heat carefully, and ignite between $500^{\circ} \mathrm{C}$ and $600^{\circ} \mathrm{C}$. Cool, and add 3 mL o hydrochloric acid. Hereinafter, proceed as volume of Standard Lead Solution directed in the monograph and water to make 50 mL .

$\mathbf{J P}$	KP

drugs is outlined below.

1. Carry out the method for sampling of crude drugs to take the drugs
being examined. being examined.
2. Use a reference drug concerned which complies with the
of tests or assays of a crude drug.
3. If the crude drugs being examined are broken, they should comply
with the general requirement, except that described under "Description" in the monograph concerned.
4. "Description" consists of the form, size, colour, surface characters,
5. Identification indicates the methods for the examination.
I. Identification indicates the methods for the examination of the
identify of crude drugs, consisting of the traditional experientional,
microscopic, physical and chemical methods.
6. Tests refers to test for the purity of crude drugs, such as the content
of water, ash or foreign matter
7. Determination of extractive refers to determine the content of soluble substances in crude drugs extracted with water or other solvents. 8. Assay refers to examine the crude drugs quantitively with chemical,
physical or biological methods, including the determination of volatile physical or biological methods, including the determination of volatile
oils, the content of active principles and potency by biological assay.
The Processing of Crude Drugs
Processing of crude drugs is to make the crude drugs into small processed pieces through processing procedures such as cleaning cutting and stir-baking, so that to obtain the processed drugs fulfilling the requirements of therapp, dispensing and making preparations thus assuring the safety and efficacy of the drugs. The water used for
processing should be unpolluted drinking water. Unless specified otherwise, the processing should meet the following requirements. otherwise, the processing should meet the following requirements.
8. Cleaning drugs after cleaning are called "clean crude
drus" Cruan druas". Clean crude druas should be used in cutting. processing.
dispensing or compounding. The crude drugs can be cleaned with the method of sorting, winnowing, washing, sifting, cutting, scraping,
paring, rejecting, brushing, rubbing and grinding, soaking, rinsing etc to reach the quality standard on the basis of specific conditions. 2. Cutting Unless cutted in fresh or dry form, the crude drugs should be
moistened to soft for cutting, it is better to keep moisten than to soak in moistened to soft for cutting, it is better to keep moisten than to soak
water to prevent the elimination of active principles, the crude drugs
and should be treated separately and appropriately according to their size, diameter and hardness, nothing the temperature, quantity of water and
duration of treatment. The drugs should be dried in time after cutting duration of treatment. The drugs should be dried in time after cutting.
The crude drugs may be cut into slices, sections, pieces and slivers, etc. Their size and thickness are generally as follows.
etc. Their size and thickness are generallo as for thins.
Slices Lices, $1-2 \mathrm{~mm}$ in thickness for thin slices; more than 2-4 mm in thickness for thick slices. Pieces Cubes of $8-12 \mathrm{~mm}$.
Slivers $\quad 2-3 \mathrm{~mm}$ in width for barks; $5-10 \mathrm{~mm}$ in width for leaves. The crude drugs other than those treated by cutting are usually treated by pounding.
9. Roasting and Broiling Unless specified otherwise, the general methods and requirments are as follows.
(1) Scalding
3) Calcing
(4) Carbonizing
(5) Steaming
(6) Boiling
(7) Stewing
(8) Blanching in boiling water
(9) Processing with wine
(10) Processing with vinegar
(11) Processing with solt-water
(12) Stir-baking with ginger juice
(12) Stir-baking with ginger juica
(13) Stir-baking with honey
(14) Stir-baking with oil
(15) Frost-like powder
(16) Levigating
(17) Roast
(17) Roast

THE PROCESSING OF CRUDE DRUGS
In traditional Vietnamese medicine, the medicaments used by or administration are always to undergo stages of processing.
preprocessing (preliminary processing): The preprocessing aims at roots, stones) or stabilising the crude drugs right away at the core beginning (exposure to sunlight, drying, sulphuration...). Thus, after preprocessing the initial materials are obtained and called "raw drugs" that however have to comply with certain requirements of quality standard
Comple
Complex-processing (processing): This is more complicated process wheraveutic to reducing toxicity, adverse and side effects or changing very often the active ingredient structure and effects of the crude

$$
\begin{aligned}
& \text { very often the active ingredient structure and effects of the crude drus } \\
& \text { oo be processed. Thus, after complex-processing the materials with } \\
& \text { officinal meaning are obtained and called "processed drugs", }
\end{aligned}
$$

fficinal meaning are obtained and called "processed drugs",

Aqueous with the requirement of therapy.
Washing
Soaking
Wrapping up
Wrapitating
Thermal methods (fire-processing)
Stir-baking
Simple stir-baking
Stir-baking with gentle heat
Stir-baking to yellowing
Stir-baking to yellowing and laying down on the ground
Stir-baking to yellowing with darkened fractures Stir-bakint with nature presevation (Stir-baking to darkening) Stit-baking to carbonizing
Stir-baking with liquid excipients
Stir-baking with wine
Stir-baking with vineger (processing with vineger)
Stir-baking with honey
Stir-baking with ginger loses
Stir-baking with milk
Stir-baking with rice-washing water
Stir-baking with urine
Stir-baking with black-bean water
Stir-baking through an inte
Stir-baking in a sand-bath
Stir-baking in a bath of powdered talc or clam-shell
Broiling
Burning with ethanol
Calcinating
Drying
Drying in
Drying in a stove at normal pressure
Drying over a cooking fire or charcoal oven

JP	KP

Determination of Tanninoids

This experiment should be proces
Preparation of reference solution

Place 50 ml reference substance solution of gallic acid, accurately measured, in 100 ml brown measuring flask, dissolve and dilute to
volume with water. Place 5 ml accurately measured, in 50 il volume with water. Place 5 ml , accurately measured, in 50 ml brown
measuring flask, dilute to volume with water, shake well (0.05 g gallic acid per ml).
Preparation of standard curve
Place $1.0 \mathrm{ml}, 2.0 \mathrm{ml}, 3.0 \mathrm{ml}, 4.0 \mathrm{ml} 5.0 \mathrm{ml}$ reference substance solution,
 respectively, then add $11 \mathrm{ml}, 10 \mathrm{ml}, 9 \mathrm{ml}, 8 \mathrm{ml}, 7 \mathrm{ml}$ water respe
dilute to volume with 29% sodium carbonate, shake well. With corresponding reagents as blank, measure the absorbance at 760 nm according to the Ultraviolet Spectrophotometry and Colourimetry. Draw
the standard curve with the absorbance as ordinate and concentration as abscissa.
Preparation of test solution
Place a quantity of the powdered material (according to the prescription under the individual monograph), accurately weighed, in a 250 ml brown metrasound for 10 minutes, allow to cool, dilute to volume with w
shake well, keep standing (for solids depositing), filter and throw awa the first 50 ml of filtrate. Place 20 ml of the filtrate, accurately measured, in 100 ml brown measuring flask, dilute to volume with water.
Procedure
Place 2 ml solution being examined, accurately measured, into 25 ml brown measuring flask. Follow the steps in preparation of standard curve, from "add 1 ml phosphotungstomolybdic acid", add 10 ml water,
measure the absorbance according to the method and calculate the measure the absorbance accord solution using the standard curve. Non-adsorbed polyphenol
Place 25 ml solution being examined, accuratly measured, in 100 ml
stoppered conical flask previously added stoppered conical flask, previously added 0.6 g casein, and stopper
well. Stay at $30^{\circ} \mathrm{C}$ for 1 hour on a water bath, shake well, then allow to cool, filter and throw away the frontal filtrate. Place 2 ml of the filtrate, accurately measured, in 25 ml brown measuring flask. Follow the steps in Preparation of standard curve, from "add 1 ml
phosphotungstomolybdic acid, add 10 ml water, measure the
absorbance and calculate the content of gallic acid in the solution being
examined using the standard curve. Use this following fo calculate the content of tannnin in the test solution.
Total tannin $=$ (Total phenol) - (Non-adsorbed polyphenol)
Determination of Cineol
Carry out the method for gas chromatography.
Chromatographic system and system suitability
Chromatographic system and system suitability
Pack a column with $7: 3(\mathrm{~g} / \mathrm{g})$ of 10.0% polyethylene glycol (PEG)-20M
and 2.0% silicon (OV-17), with PEG at the end of injection column temperature $110 \pm 5^{\circ} \mathrm{C}$; the number of theoretical plate of the column is not less than 2500, calculated with reference to cineol; the resolution factor of the peaks of cineol and its neighbouring impurities
should meet the requirement. should meet the requirement.
Determination of the correction factor
Dissolve a quantity of cyclihexanone, accurately weighed, in \boldsymbol{n}-hexane to make a solution containing 50 mg per ml as the internal standard. Weigh accurately about 100 mg of cineol CRS to a 10 ml volumetric n-hexane to volume, shake well, inject 1 ml of the solution to the n-hexane or
column for $3-5$ times, and calculate the correction factor by the averag area of peaks.
Preparation and determination of the test solution
Weigh accurately about 100 mg of the sample to a 10 ml volumetric flask, add accurately 2 ml of the internal standard solution, dilute with
n-hexane to volume, shake well, use it as the test solution. Inject 1 ml of the solution to the column and calculate the content of cineol.

THE PROCESSING OF CRUDE DRUGS
Aqueous-thermal methods
Stewing
Steaming
Steaming
Boiling
Quenching
DETERMINATION OF TANNINOIDS IN HERBAL DRUGS
Weigh accurately a quantity of powdered crude drug (passed through a
NO 355 sieve) containing about 1 g of tannoids. Place in a conical flask, add 150 ml of water and heat on a bath for 30 minutes. Allow to cool, ransfer the mixture to a 250 ml volumetric flask. Dilute to volume with water, filter and use the filtrate as the test solution.
Take accurately 25 ml of the test solution, evaporate to dryness, dry the residue at $105^{\circ} \mathrm{C}$ for 3 hours. Weigh (T1 g).
Determination of water-soluble extractives not bound with hide powder To 100 ml of the test solution, measured accurately, add 6 g of dry hide of the filtrate, evaporate to dryness, dry the residue at $105^{\circ} \mathrm{C}$ for 3 hours Weiah (T2 a). Determination of water-soluble extractives of hide powder
To 100 ml of water, measured accurately, add 6 g of dry hide powder
(R). Shake well fore 15 minutes and filter, Take accurately 25 ml of the Weitrate, Weigh (TO g). Calculate the percentage of tanninoids in herbal drugs rom the expression:
$(\mathrm{T} 1-\mathrm{T} 2+\mathrm{TO}) \times 10 / \mathrm{a} \times 100$
(T1-T2+
where:
is the mass taken (in g) of the drug being examined, calculated on the dried basis.

DETERMINATION OF CINEOLE IN THE VOLATILE OIL
Weigh 3.00 g of the sample, recently dried with anhydrous sodium sulphate R , into a dry test tube and add 2.10 g of melted o-cresol. Place allow to cool, stirring continuously. When crystallisation takes place here is a small rise in temperature; note the highest temperature reached (t 1). Remelt the mixture on a water bath ensuring that the emperature douse not exceed t1 by more than $5^{\circ} \mathrm{C}$ and place the tube in he apparatus maintained at a temperature $5^{\circ} \mathrm{C}$ below t 1 . When has fallen $3^{\circ} \mathrm{C}$ below t 1 , stair continuously, note the highest temperatur at which the mixture freezes (t 2). Repeat the operation until the tow highest values obtained for $t 2$ not differ by more than $0.2^{\circ} \mathrm{C}$. If supe cooling occurs, induce crystallisation by the addition of small crystal of t2 is below $27.4^{\circ} \mathrm{C}$, repeat the determination after the addition of $5,10 \mathrm{~g}$ of the complex. Determine the percentage (m / m) of cineole correspondent to the freezing point (2) from the Table, obtaining intermediate values by interpolation. If 5.10 g of the cineol 0 -cresol complex was added, calculate the percentage m / m of cineole from the
expression $2(A-50)$, where A is the value corresponding to a freezing point of t 2 taken from the Table.

Acknowledgments

We are grateful to Dr. Chen Ken and Dr. Choi Seung-Hoon (Regional Adviser of Traditional Medicine, WPRO) for special advice and suggestions to the Sub-Committee 1. We are also grateful to the heads of EWGs for coordinating each EWG and preparing comparative tables, and express special thanks to all FHH members for their wholehearted assistance of our work.

A part of this work was financially supported by a Health and Lavour Sciences Research Grant formulations for "Studies on evaluating the effectiveness, ensuring the safety and international harmonization of crude drugs and Kampo formulations", "Studies on evaluating effectiveness, ensuring the safety and reconsideration of the 210 Kampo formulations for OTC drugs" and "Studies on international harmonization of herbal medicine in pharmacopoeias" from the Ministry of Health Labour and Welfare of Japan.

[^0]: Note: Menthae Herba (SN 32) could not be classified into any of the above patterns, as the existence of hybrid makes it difficult

[^1]: * Registered in the Japanese Herbal Medicine Codex (JHMC) 1989.

